(1)) Find all values of \( k \) that make \( f(x) \) continuous at \( x=1 \) \[ f(x)=\left\{\begin{array}{ll}-x^{2}-3 & \text { if } x \leq 1 \\ -5 k x+k^{2} & \text { if } x>1\end{array}\right. \] \( k= \) Write your answer as a single value or a list of values separated by commas.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To ensure \( f(x) \) is continuous at \( x=1 \), we need \( \lim_{x \to 1^-} f(x) \) to equal \( \lim_{x \to 1^+} f(x) \). Calculating the left-hand limit: \[ \lim_{x \to 1^-} f(x) = -1^2 - 3 = -1 - 3 = -4. \] Calculating the right-hand limit: \[ \lim_{x \to 1^+} f(x) = -5k(1) + k^2 = -5k + k^2. \] Setting the two limits equal for continuity: \[ -4 = -5k + k^2. \] Rearranging the equation gives: \[ k^2 - 5k + 4 = 0. \] Factoring the quadratic: \[ (k - 4)(k - 1) = 0. \] Thus, \( k = 4 \) or \( k = 1 \). So the values of \( k \) that make \( f(x) \) continuous at \( x=1 \) are: \[ k = 4, 1. \]