Pregunta

12. The sum of the first five terms of an arithmetic series is 5. The fourth term exceeds the seventh by 6. Find the sum of the first ten terms.

Ask by Herrera Lee. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the first ten terms is -40.

Solución

Let's solve the problem step by step. **Given:** - The series is arithmetic with first term \( a \) and common difference \( d \). - The sum of the first five terms (\( S_5 \)) is 5. - The fourth term exceeds the seventh by 6. **1. Sum of the first five terms:** The sum of the first \( n \) terms of an arithmetic series is given by: \[ S_n = \frac{n}{2} \left[2a + (n-1)d\right] \] For \( S_5 = 5 \): \[ \frac{5}{2} \left[2a + 4d\right] = 5 \\ 2a + 4d = 2 \quad \Rightarrow \quad a + 2d = 1 \quad \text{(Equation 1)} \] **2. Relation between the fourth and seventh terms:** The \( n \)-th term of an arithmetic series is: \[ a_n = a + (n-1)d \] Given that the fourth term exceeds the seventh by 6: \[ (a + 3d) - (a + 6d) = 6 \\ -3d = 6 \quad \Rightarrow \quad d = -2 \] **3. Finding the first term \( a \):** Substitute \( d = -2 \) into Equation 1: \[ a + 2(-2) = 1 \\ a - 4 = 1 \\ a = 5 \] **4. Sum of the first ten terms:** Using the sum formula for \( n = 10 \): \[ S_{10} = \frac{10}{2} \left[2(5) + 9(-2)\right] \\ S_{10} = 5 \left[10 - 18\right] \\ S_{10} = 5 \times (-8) \\ S_{10} = -40 \] **Answer:** -40

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the problem, let's denote the first term of the arithmetic series as \( a \) and the common difference as \( d \). Given the first condition regarding the sum of the first five terms: \[ S_5 = \frac{n}{2} (2a + (n-1)d) = 5 \implies \frac{5}{2} (2a + 4d) = 5 \implies 2a + 4d = 2 \implies a + 2d = 1 \quad \text{(1)} \] Now, the second condition states that the fourth term exceeds the seventh term by 6: \[ a + 3d = a + 6d + 6 \implies 3d = 6d + 6 \implies -3d = 6 \implies d = -2 \quad \text{(2)} \] Substituting \( d = -2 \) back into equation (1): \[ a + 2(-2) = 1 \implies a - 4 = 1 \implies a = 5 \quad \text{(3)} \] Now we have \( a = 5 \) and \( d = -2 \). To find the sum of the first ten terms: \[ S_{10} = \frac{10}{2} (2a + (10-1)d) = 5(2(5) + 9(-2)) \] \[ = 5(10 - 18) = 5(-8) = -40. \] Thus, the sum of the first ten terms is \( \boxed{-40} \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad