Pregunta
upstudy study bank question image url

Write the equation in vertex form for the parabola with focus \( \left(-5, \frac{5}{2}\right) \) and directrix \( y=-\frac{5}{2} \) Simplify any fractions. \begin{tabular}{|lll}\hline 믐 & (ロ) \end{tabular}

Ask by Griffin Gough. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the parabola in vertex form is \( (x + 5)^2 = 10y \).

Solución

To find the equation of a parabola in vertex form given the **focus** and **directrix**, follow these steps: ### Given: - **Focus:** \( \left(-5, \frac{5}{2}\right) \) - **Directrix:** \( y = -\frac{5}{2} \) ### Step 1: Determine the Vertex The vertex lies exactly halfway between the focus and the directrix. 1. **y-coordinate of the vertex:** \[ \text{Vertex } y = \frac{\text{Focus } y + \text{Directrix } y}{2} = \frac{\frac{5}{2} + \left(-\frac{5}{2}\right)}{2} = \frac{0}{2} = 0 \] 2. **x-coordinate of the vertex:** Since the directrix is horizontal, the x-coordinate of the vertex is the same as that of the focus: \[ \text{Vertex } x = -5 \] **Vertex:** \( (-5, 0) \) ### Step 2: Determine the Value of \( p \) The distance \( p \) is the distance from the vertex to the focus (or equivalently, to the directrix). \[ p = \frac{5}{2} - 0 = \frac{5}{2} \] ### Step 3: Write the Vertex Form Equation For a parabola that opens **upward** or **downward**, the vertex form is: \[ (x - h)^2 = 4p(y - k) \] where \( (h, k) \) is the vertex. Plugging in the known values: \[ (x - (-5))^2 = 4 \left(\frac{5}{2}\right)(y - 0) \] \[ (x + 5)^2 = 10y \] ### Final Equation \[ \boxed{(x + 5)^2 = 10\,y} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the vertex form of the parabola, we start by finding the vertex, which is the midpoint between the focus \((-5, \frac{5}{2})\) and the directrix \(y = -\frac{5}{2}\). The y-coordinate of the vertex is the average of \(\frac{5}{2}\) and \(-\frac{5}{2}\), which is \(0\). Therefore, the vertex is at \((-5, 0)\). Since the focus is above the directrix, we have a vertical parabola that opens upwards. The distance from the vertex to the focus (or the directrix) is \(p = \frac{5}{2}\), which gives us: \[ y = a(x - h)^2 + k \] where \((h, k)\) is the vertex, \((-5, 0)\). The formula relating \(p\) and \(a\) for a parabola that opens up is \(a = \frac{1}{4p}\). So, \(a = \frac{1}{4(\frac{5}{2})} = \frac{1}{10}\). Thus, the equation in vertex form is: \[ y = \frac{1}{10}(x + 5)^2 \] So, the final answer is: \[ y = \frac{1}{10}(x + 5)^2 \] --- The construction of parabolas dates back to ancient Greece, where mathematicians like Apollonius of Perga explored their geometric properties. They defined conic sections, including parabolas, based on intersections between a plane and a cone. Fast forward to modern times, parabolas are pivotal in physics and engineering, underpinning designs like satellite dishes and the trajectories of projectiles. In real-world applications, parabolas aren't just confined to mathematics. They appear in the design of roller coasters, providing thrilling drops and turns. Engineers harness their unique properties to ensure stability and strength in structures, showcasing how mathematical principles beautifully blend with practical design. Understanding these concepts can elevate your appreciation of everyday engineering marvels!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad