Pregunta
upstudy study bank question image url

A new car is purchased for 16500 dollars. The value of the car depreciates at \( 5.75 \% \) per year. What will the value of the car be, to the nearest cent, after 5 years?

Ask by Ruiz Riley. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car will be worth approximately $12,271.30 after 5 years.

Solución

To find the value of the car after 5 years, we can use the formula for depreciation: \[ V = P \times (1 - r)^n \] where: - \( V \) is the value of the car after \( n \) years, - \( P \) is the initial value of the car, - \( r \) is the annual depreciation rate, - \( n \) is the number of years. Given: - Initial value of the car, \( P = 16500 \) dollars, - Annual depreciation rate, \( r = 5.75\% \), - Number of years, \( n = 5 \). Substitute the given values into the formula: \[ V = 16500 \times (1 - 0.0575)^5 \] Now, we can calculate the value of the car after 5 years. Calculate the value by following steps: - step0: Calculate: \(16500\left(1-0.0575\right)^{5}\) - step1: Subtract the numbers: \(16500\times 0.9425^{5}\) - step2: Convert the expressions: \(16500\left(\frac{377}{400}\right)^{5}\) - step3: Simplify: \(16500\times \frac{377^{5}}{400^{5}}\) - step4: Rewrite the expression: \(100\times 165\times \frac{377^{5}}{400^{5}}\) - step5: Rewrite the expression: \(100\times 165\times \frac{377^{5}}{100^{5}\times 4^{5}}\) - step6: Reduce the numbers: \(165\times \frac{377^{5}}{100^{4}\times 4^{5}}\) - step7: Rewrite the expression: \(5\times 33\times \frac{377^{5}}{100^{4}\times 4^{5}}\) - step8: Rewrite the expression: \(5\times 33\times \frac{377^{5}}{25^{4}\times 4^{4}\times 4^{5}}\) - step9: Rewrite the expression: \(5\times 33\times \frac{377^{5}}{5^{8}\times 4^{4}\times 4^{5}}\) - step10: Reduce the numbers: \(33\times \frac{377^{5}}{5^{7}\times 4^{4}\times 4^{5}}\) - step11: Multiply the fractions: \(\frac{33\times 377^{5}}{4^{9}\times 5^{7}}\) The value of the car after 5 years will be approximately $12271.30 to the nearest cent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the value of the car after 5 years of depreciation, you can use the depreciation formula: \[ \text{Value} = \text{Initial Value} \times (1 - \text{Depreciation Rate})^n \] where the Initial Value is \$16,500, the Depreciation Rate is 5.75% (or 0.0575 as a decimal), and \( n \) is the number of years (in this case, 5). So, plugging in the values: \[ \text{Value} = 16500 \times (1 - 0.0575)^5 \] Calculating: \[ \text{Value} = 16500 \times (0.9425)^5 \approx 16500 \times 0.7695 \approx 12768.75 \] Thus, the value of the car after 5 years will be approximately \$12,768.75. Now, what could happen in real life after that? The depreciation of a car is crucial for anyone thinking about buying one. After just a few years, the value of your shiny new ride drops significantly—sometimes even more than the yearly depreciation percentage! It's wise to factor in this decreasing value when negotiating insurance or planning for a future sale. Another consideration involves maintenance costs. While a new car may seem like an easy choice, as it ages, maintenance and repairs can begin to add up. Make sure to keep a rainy-day fund for unexpected repairs, especially when your warranty runs out—nobody wants to be caught off guard when that fuel gauge starts acting funny!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad