Pregunta
upstudy study bank question image url

21) The beta decay of cesium- 137 has a half-life of 30.0 years. How many years must pass to reduce a 30 mg sample of cesium 137 to 5.2 mg ? A. 38 years B. 0.040 years C. 25 years D. 76 years

Ask by Ramirez Carrillo. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It takes approximately 76 years to reduce a 30 mg sample of cesium-137 to 5.2 mg.

Solución

To solve this problem, we can use the concept of half-life and the formula for radioactive decay. Given: - Half-life of cesium-137 = 30 years - Initial mass of cesium-137 = 30 mg - Final mass of cesium-137 = 5.2 mg We can use the formula for radioactive decay: \[ A = A_0 \times \left( \frac{1}{2} \right)^{\frac{t}{t_{1/2}}} \] Where: - \( A \) is the final mass of cesium-137 - \( A_0 \) is the initial mass of cesium-137 - \( t \) is the time that has passed - \( t_{1/2} \) is the half-life of cesium-137 Substitute the given values into the formula: \[ 5.2 = 30 \times \left( \frac{1}{2} \right)^{\frac{t}{30}} \] Now, we can solve for \( t \) to find out how many years must pass to reduce the sample of cesium-137 to 5.2 mg. Solve the equation by following steps: - step0: Solve for \(t\): \(5.2=30\left(\frac{1}{2}\right)^{\frac{t}{30}}\) - step1: Swap the sides: \(30\left(\frac{1}{2}\right)^{\frac{t}{30}}=5.2\) - step2: Convert the expressions: \(30\left(\frac{1}{2}\right)^{\frac{t}{30}}=\frac{26}{5}\) - step3: Multiply by the reciprocal: \(30\left(\frac{1}{2}\right)^{\frac{t}{30}}\times \frac{1}{30}=\frac{26}{5}\times \frac{1}{30}\) - step4: Multiply: \(\left(\frac{1}{2}\right)^{\frac{t}{30}}=\frac{13}{75}\) - step5: Take the logarithm of both sides: \(\log_{\frac{1}{2}}{\left(\left(\frac{1}{2}\right)^{\frac{t}{30}}\right)}=\log_{\frac{1}{2}}{\left(\frac{13}{75}\right)}\) - step6: Evaluate the logarithm: \(\frac{t}{30}=\log_{\frac{1}{2}}{\left(\frac{13}{75}\right)}\) - step7: Cross multiply: \(t=30\log_{\frac{1}{2}}{\left(\frac{13}{75}\right)}\) - step8: Simplify: \(t=30\log_{2}{\left(75\right)}-30\log_{2}{\left(13\right)}\) The time that must pass to reduce a 30 mg sample of cesium-137 to 5.2 mg is given by the equation: \[ t = 30 \log_{2}(75) - 30 \log_{2}(13) \] Now, we can calculate the value of \( t \) to determine the answer. Calculate the value by following steps: - step0: Calculate: \(30\log_{2}{\left(75\right)}-30\log_{2}{\left(13\right)}\) - step1: Rewrite the expression: \(\log_{2}{\left(75^{30}\right)}-\log_{2}{\left(13^{30}\right)}\) - step2: Use the logarithm product rule: \(\log_{2}{\left(\frac{75^{30}}{13^{30}}\right)}\) - step3: Write in exponential form: \(\log_{2}{\left(\left(\frac{75}{13}\right)^{30}\right)}\) - step4: Calculate: \(30\log_{2}{\left(\frac{75}{13}\right)}\) The time that must pass to reduce a 30 mg sample of cesium-137 to 5.2 mg is approximately 75.85 years. Therefore, the correct answer is: D. 76 years

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the time required for a 30 mg sample of cesium-137 to decay to 5.2 mg, we can use the half-life formula. First, we need to find out how many half-lives it takes to go from 30 mg to 5.2 mg. Each half-life reduces the amount by half. So: - After 1 half-life (30 years): 30 mg -> 15 mg - After 2 half-lives (60 years): 15 mg -> 7.5 mg - After 3 half-lives (90 years): 7.5 mg -> 3.75 mg We can see that after 2 half-lives (60 years), the amount is more than 5.2 mg. Now we need to calculate the time required to reach exactly 5.2 mg, which will be a bit more than 60 years but less than 90 years. So we calculate the fraction remaining from the 60-year mark, leading us to find that approximately 76 years is the correct answer! So the answer is D. 76 years. If you’re diving into the world of radioactivity, you’ll find that understanding half-lives is key! Half-lives can be found in a variety of materials, from medical isotopes to archaeological dating. For instance, carbon-14 dating leverages the concept of half-lives to determine the age of ancient organic materials. Want to impress your friends with some trivia? Did you know that cesium-137 is used as a radiation source in medical applications, specifically in cancer treatment and in some industrial gauges? It's fascinating how elements that undergo decay also serve useful purposes in our everyday lives!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad