Pregunta
upstudy study bank question image url

The bank offers a rate of \( 11 \% \), compounded continuously, on any deposit that will not be removed for a minimum of 20 years. If you invest \( \$ 10,000 \) with the bank, how much money can you expect to have in the account after 20 years? Round your answer to the nearest cent (hundredth).

Ask by Lindsey Tyler. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 20 years, you can expect to have approximately \$90,250.13 in the account.

Solución

To calculate the amount of money that can be expected in the account after 20 years with continuous compounding, we can use the formula for continuous compounding: \[ A = P \times e^{r \times t} \] Where: - \( A \) is the amount of money after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in decimal form), - \( t \) is the time in years. Given: - \( P = \$10,000 \), - \( r = 11\% = 0.11 \) (in decimal form), - \( t = 20 \) years. Substitute the values into the formula: \[ A = 10000 \times e^{0.11 \times 20} \] Now, we can calculate the amount of money that can be expected in the account after 20 years. Calculate the value by following steps: - step0: Calculate: \(10000e^{0.11\times 20}\) - step1: Multiply the numbers: \(10000e^{2.2}\) - step2: Convert the expressions: \(10000e^{\frac{11}{5}}\) The amount of money that can be expected in the account after 20 years with continuous compounding at a rate of 11% is approximately $90,250.13. Rounding to the nearest cent, the expected amount is $90,250.13.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the future value of an investment compounded continuously, you can use the formula: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial amount of money), - \( r \) is the annual interest rate (decimal), - \( t \) is the time in years, - \( e \) is the base of the natural logarithm (approximately equal to 2.71828). Plugging in the numbers: - \( P = 10,000 \) - \( r = 0.11 \) - \( t = 20 \) \[ A = 10000 \cdot e^{0.11 \cdot 20} \\ A \approx 10000 \cdot e^{2.2} \\ A \approx 10000 \cdot 9.0250 \\ A \approx 90250.00 \] After rounding to the nearest cent, you can expect to have approximately **$90,250.00** in the account after 20 years.

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad