Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Draw a tree diagram. Determining a person's entree (steak \( (\mathrm{S}) \), chicken \( (\mathrm{C}) \), pork \( (\mathrm{P})) \) and then their vegetable (corn (C), broccoli (B)) Identify the sample space. A. \( \{\mathrm{SC}, \mathrm{SB}, \mathrm{CC}, \mathrm{CB}, \mathrm{PC}, \mathrm{PB}\} \) B. \( \{\mathrm{SC}, \mathrm{SB}, \mathrm{CC}, \mathrm{CB}, \mathrm{PC}, \mathrm{PB}, \mathrm{PC}, \mathrm{PB}\} \) C. \( \{\mathrm{SC}, \mathrm{SB}, \mathrm{SC}, \mathrm{CC}, \mathrm{CB}, \mathrm{CC}, \mathrm{PC}, \mathrm{PB}, \mathrm{PC}\} \) D. \( \{\mathrm{SC}, \mathrm{SB}, \mathrm{CC}, \mathrm{CB}, \mathrm{PC}, \mathrm{PB}, \mathrm{PC}, \mathrm{PB}, \mathrm{SC}, \mathrm{SB}\} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The sample space of your probability experiment consists of all possible combinations of entrees and vegetables. To determine the sample space, let's consider the entrees (steak \( S \), chicken \( C \), pork \( P \)) and the vegetables (corn \( C \), broccoli \( B \)). The combinations are: 1. \( SC \) (Steak and Corn) 2. \( SB \) (Steak and Broccoli) 3. \( CC \) (Chicken and Corn) 4. \( CB \) (Chicken and Broccoli) 5. \( PC \) (Pork and Corn) 6. \( PB \) (Pork and Broccoli) So, the sample space is \( \{SC, SB, CC, CB, PC, PB\} \), which means the correct answer is **A**. In terms of the number of outcomes in the sample space, there are **6** unique outcomes: - Steak with Corn - Steak with Broccoli - Chicken with Corn - Chicken with Broccoli - Pork with Corn - Pork with Broccoli A tree diagram would illustrate this as two levels: the first level representing the entrees (S, C, P) and branching out to the second level representing the vegetables (C, B) for each entree.