Karen's car weighs \( 6 \frac{3}{8} \) tons and Ava's car weighs \( 4 \frac{1}{8} \) tons. How much more does Karen's car weigh than Ava's car?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find out how much more Karen's car weighs than Ava's, we need to subtract Ava's car weight from Karen's car weight. First, convert the mixed numbers to improper fractions: - Karen's car: \( 6 \frac{3}{8} = \frac{6 \cdot 8 + 3}{8} = \frac{48 + 3}{8} = \frac{51}{8} \) - Ava's car: \( 4 \frac{1}{8} = \frac{4 \cdot 8 + 1}{8} = \frac{32 + 1}{8} = \frac{33}{8} \) Now, subtract Ava's weight from Karen's weight: \[ \frac{51}{8} - \frac{33}{8} = \frac{51 - 33}{8} = \frac{18}{8} = \frac{9}{4} \text{ tons} \] Convert \(\frac{9}{4}\) to a mixed number: \(\frac{9}{4} = 2 \frac{1}{4}\) Therefore, Karen's car weighs \( 2 \frac{1}{4} \) tons more than Ava's car.