Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Consider the function \( f(x)=-2 x^{2}+16 x-9 \). a. Determine, without graphing, whether the function has a minimum value or a maximum value. b. Find the minimum or maximum value and determine where it occurs. c. Identify the function's domain and its range. a. The function has a value.

Ask by Owen Huang. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = -2x^{2} + 16x - 9 \) has a **maximum value of 23 at \( x = 4 \)**. Its **domain is all real numbers** and its **range is all real numbers less than or equal to 23**.

Solución

Let's analyze the quadratic function \( f(x) = -2x^{2} + 16x - 9 \) step by step. ### a. Determine whether the function has a minimum value or a maximum value. For any quadratic function of the form \( f(x) = ax^{2} + bx + c \): - **If \( a > 0 \)**: The parabola opens **upward**, and the function has a **minimum** value. - **If \( a < 0 \)**: The parabola opens **downward**, and the function has a **maximum** value. **Given:** \( a = -2 \) Since \( a = -2 < 0 \), the function \( f(x) \) has a **maximum** value. --- ### b. Find the maximum value and determine where it occurs. The maximum (or minimum) value of a quadratic function occurs at its **vertex**. The x-coordinate of the vertex can be found using the formula: \[ x = -\frac{b}{2a} \] **Given:** - \( a = -2 \) - \( b = 16 \) **Calculating the x-coordinate:** \[ x = -\frac{16}{2 \times (-2)} = -\frac{16}{-4} = 4 \] Now, substitute \( x = 4 \) back into the function to find the y-coordinate (maximum value): \[ f(4) = -2(4)^{2} + 16(4) - 9 = -2(16) + 64 - 9 = -32 + 64 - 9 = 23 \] **Conclusion:** - **Maximum Value:** \( 23 \) - **Occurs at:** \( x = 4 \) --- ### c. Identify the function's domain and its range. **Domain:** The domain of a quadratic function is **all real numbers** since you can input any real number for \( x \). \[ \text{Domain: } (-\infty, \infty) \] **Range:** Since the parabola opens **downward** (because \( a < 0 \)) and the maximum value is \( 23 \), the range includes all real numbers **less than or equal to** the maximum value. \[ \text{Range: } (-\infty, 23] \] --- ### Summary a. **The function has a maximum value.** b. **The maximum value is \( 23 \), occurring at \( x = 4 \).** c. **Domain:** \( (-\infty, \infty) \)    **Range:** \( (-\infty, 23] \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( f(x) = -2x^2 + 16x - 9 \) is a quadratic function, and because the coefficient of \( x^2 \) is negative (-2), it opens downwards. This means it has a maximum value. To find the maximum value, we use the vertex formula \( x = -\frac{b}{2a} \). Here, \( a = -2 \) and \( b = 16 \). Plugging in these values gives us: \[ x = -\frac{16}{2 \times -2} = 4. \] Now, substituting \( x = 4 \) back into the function: \[ f(4) = -2(4)^2 + 16(4) - 9 = -32 + 64 - 9 = 23. \] Thus, the maximum value is 23, which occurs at \( x = 4 \). The function's domain is all real numbers, \( (-\infty, \infty) \), and since it opens downwards, its range is from the maximum value down to negative infinity, \( (-\infty, 23] \). Exploring quadratic functions further, you will find that their vertex gives you crucial information about their minima or maxima. This is a great way to visualize how these functions behave without a graph! If you dive into real-world applications, you'll see quadratic functions pop up in many fields like engineering and physics! They help in modeling trajectories, maximizing profits, or minimizing costs. Whether you're designing a parabolic bridge or optimizing a business, these functions are like the Swiss army knives of mathematics—versatile and essential!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad