Pregunta
upstudy study bank question image url

3) \( 5.52+3 \csc \theta=5+\frac{11}{4} \cdot \csc \theta \)

Ask by Bird Burns. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equation are: \[ \theta \approx -0.501532 + 2k\pi \quad \text{and} \quad \theta \approx 3.643124 + 2k\pi \quad \text{for any integer } k. \]

Solución

Solve the equation \( 5.52+3\csc(\theta)=5+\frac{11}{4}\csc(\theta) \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(5.52+3\csc\left(\theta \right)=5+\frac{11}{4}\csc\left(\theta \right)\) - step1: Find the domain: \(5.52+3\csc\left(\theta \right)=5+\frac{11}{4}\csc\left(\theta \right),\theta \neq k\pi ,k \in \mathbb{Z}\) - step2: Move the expression to the left side: \(5.52+3\csc\left(\theta \right)-\left(5+\frac{11}{4}\csc\left(\theta \right)\right)=0\) - step3: Calculate: \(0.52+\frac{1}{4}\csc\left(\theta \right)=0\) - step4: Move the constant to the right side: \(\frac{1}{4}\csc\left(\theta \right)=0-0.52\) - step5: Remove 0: \(\frac{1}{4}\csc\left(\theta \right)=-0.52\) - step6: Multiply by the reciprocal: \(\frac{1}{4}\csc\left(\theta \right)\times 4=-0.52\times 4\) - step7: Multiply: \(\csc\left(\theta \right)=-2.08\) - step8: Use the inverse trigonometric function: \(\theta =\operatorname{arccsc}\left(-2.08\right)\) - step9: Calculate: \(\begin{align}&\theta =-\operatorname{arccsc}\left(2.08\right)\\&\theta =\operatorname{arccsc}\left(2.08\right)+\pi \end{align}\) - step10: Add the period: \(\begin{align}&\theta =-\operatorname{arccsc}\left(2.08\right)+2k\pi ,k \in \mathbb{Z}\\&\theta =\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step11: Find the union: \(\theta =\left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) - step12: Check if the solution is in the defined range: \(\theta =\left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z},\theta \neq k\pi ,k \in \mathbb{Z}\) - step13: Find the intersection: \(\theta =\left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) - step14: Simplify: \(\theta \approx \left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\3.643124+2k\pi \end{array}\right.,k \in \mathbb{Z}\) The solutions to the equation \(5.52+3\csc(\theta)=5+\frac{11}{4}\csc(\theta)\) are: \[ \theta \approx \left\{ \begin{array}{l} -\operatorname{arccsc}(2.08)+2k\pi \\ 3.643124+2k\pi \end{array} \right., k \in \mathbb{Z} \] \[ \theta \approx \left\{ \begin{array}{l} -0.501532+2k\pi \\ 3.643124+2k\pi \end{array} \right., k \in \mathbb{Z} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( 5.52 + 3 \csc \theta = 5 + \frac{11}{4} \cdot \csc \theta \), we first want to isolate the \(\csc \theta\) terms on one side. Rearranging gives: \[ 3 \csc \theta - \frac{11}{4} \csc \theta = 5 - 5.52 \] This simplifies to: \[ \left(3 - \frac{11}{4}\right) \csc \theta = -0.52 \] Finding a common denominator for the left side, we rewrite \(3\) as \(\frac{12}{4}\): \[ \left(\frac{12}{4} - \frac{11}{4}\right) \csc \theta = -0.52 \] This further simplifies to: \[ \frac{1}{4} \csc \theta = -0.52 \] Multiplying both sides by 4 results in: \[ \csc \theta = -2.08 \] The cosecant function, \(\csc \theta\), is the reciprocal of the sine function, so we have: \[ \sin \theta = -\frac{1}{2.08} \] Now, you can calculate the value of \(\sin \theta\) and find the corresponding angles based on this value. Happy calculating!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad