Responder
The solutions to the equation are:
\[
\theta \approx -0.501532 + 2k\pi \quad \text{and} \quad \theta \approx 3.643124 + 2k\pi \quad \text{for any integer } k.
\]
Solución
Solve the equation \( 5.52+3\csc(\theta)=5+\frac{11}{4}\csc(\theta) \).
Solve the equation by following steps:
- step0: Solve for \(\theta\):
\(5.52+3\csc\left(\theta \right)=5+\frac{11}{4}\csc\left(\theta \right)\)
- step1: Find the domain:
\(5.52+3\csc\left(\theta \right)=5+\frac{11}{4}\csc\left(\theta \right),\theta \neq k\pi ,k \in \mathbb{Z}\)
- step2: Move the expression to the left side:
\(5.52+3\csc\left(\theta \right)-\left(5+\frac{11}{4}\csc\left(\theta \right)\right)=0\)
- step3: Calculate:
\(0.52+\frac{1}{4}\csc\left(\theta \right)=0\)
- step4: Move the constant to the right side:
\(\frac{1}{4}\csc\left(\theta \right)=0-0.52\)
- step5: Remove 0:
\(\frac{1}{4}\csc\left(\theta \right)=-0.52\)
- step6: Multiply by the reciprocal:
\(\frac{1}{4}\csc\left(\theta \right)\times 4=-0.52\times 4\)
- step7: Multiply:
\(\csc\left(\theta \right)=-2.08\)
- step8: Use the inverse trigonometric function:
\(\theta =\operatorname{arccsc}\left(-2.08\right)\)
- step9: Calculate:
\(\begin{align}&\theta =-\operatorname{arccsc}\left(2.08\right)\\&\theta =\operatorname{arccsc}\left(2.08\right)+\pi \end{align}\)
- step10: Add the period:
\(\begin{align}&\theta =-\operatorname{arccsc}\left(2.08\right)+2k\pi ,k \in \mathbb{Z}\\&\theta =\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\)
- step11: Find the union:
\(\theta =\left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step12: Check if the solution is in the defined range:
\(\theta =\left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z},\theta \neq k\pi ,k \in \mathbb{Z}\)
- step13: Find the intersection:
\(\theta =\left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\\operatorname{arccsc}\left(2.08\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step14: Simplify:
\(\theta \approx \left\{ \begin{array}{l}-\operatorname{arccsc}\left(2.08\right)+2k\pi \\3.643124+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
The solutions to the equation \(5.52+3\csc(\theta)=5+\frac{11}{4}\csc(\theta)\) are:
\[
\theta \approx \left\{ \begin{array}{l} -\operatorname{arccsc}(2.08)+2k\pi \\ 3.643124+2k\pi \end{array} \right., k \in \mathbb{Z}
\]
\[
\theta \approx \left\{ \begin{array}{l} -0.501532+2k\pi \\ 3.643124+2k\pi \end{array} \right., k \in \mathbb{Z}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución