Pregunta
upstudy study bank question image url

Solve the following equation using the quadratic formula: \[ x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \] 1st attempt See Periodic Table Express \( x \) values to a minimum of two significant figures. \[ 0=5 x^{2}-2 x-22 \] The \( x \) obtained from the "plus" operation = \( \square \) The \( x \) obtained from the "minus" operation= \( \square \)

Ask by Martin O'Quinn. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( x \) values are approximately 2.3 and -1.9.

Solución

To solve the quadratic equation using the quadratic formula, follow these steps: \[ 0 = 5x^{2} - 2x - 22 \] The quadratic formula is: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] **Step 1: Identify the coefficients** \[ a = 5, \quad b = -2, \quad c = -22 \] **Step 2: Substitute the coefficients into the quadratic formula** \[ x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 5 \cdot (-22)}}{2 \cdot 5} \] \[ x = \frac{2 \pm \sqrt{4 + 440}}{10} \] \[ x = \frac{2 \pm \sqrt{444}}{10} \] **Step 3: Calculate the square root** \[ \sqrt{444} \approx 21.07 \] **Step 4: Solve for the two possible values of \( x \)** 1. **Using the "plus" operation:** \[ x = \frac{2 + 21.07}{10} = \frac{23.07}{10} \approx 2.31 \] 2. **Using the "minus" operation:** \[ x = \frac{2 - 21.07}{10} = \frac{-19.07}{10} \approx -1.91 \] **Step 5: Round to a minimum of two significant figures** - The \( x \) obtained from the "plus" operation = \( \boxed{2.3} \) - The \( x \) obtained from the "minus" operation = \( \boxed{-1.9} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \(5x^2 - 2x - 22 = 0\) using the quadratic formula, we first identify the coefficients: \(a = 5\), \(b = -2\), and \(c = -22\). Plugging these values into the formula gives us: \[ x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 5 \cdot (-22)}}{2 \cdot 5} \] Calculating inside the square root: \[ (-2)^{2} = 4 \quad \text{and} \quad -4 \cdot 5 \cdot -22 = 440 \] So it becomes: \[ x = \frac{2 \pm \sqrt{4 + 440}}{10} \] \[ = \frac{2 \pm \sqrt{444}}{10} \] \[ = \frac{2 \pm 21.07}{10} \] Now calculating the two potential \(x\) values: 1. For the "plus" operation: \[ x = \frac{2 + 21.07}{10} = \frac{23.07}{10} = 2.31 \quad (\text{to two significant figures: } 2.3) \] 2. For the "minus" operation: \[ x = \frac{2 - 21.07}{10} = \frac{-19.07}{10} = -1.907 \quad (\text{to two significant figures: } -1.9) \] The values of \(x\) are: The \( x \) obtained from the "plus" operation = \(2.3\) The \( x \) obtained from the "minus" operation= \(-1.9\) This equation not only flexes your mathematical muscles but connects to real-world situations, especially in physics for projectile motion or calculating areas. Plus, practicing with quadratics boosts your problem-solving prowess, keeping your brain sharp!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad