Let \( f(x)=4 \sin ^{2} 3 x \) find the value of \( f^{\prime}\left(\frac{1}{4} \pi\right) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the derivative of the function \( f(x) = 4 \sin^{2}(3x) \), we can use the chain rule. 1. First, let's differentiate \( f(x) \): \[ f'(x) = 4 \cdot 2 \sin(3x) \cdot \cos(3x) \cdot (3) = 24 \sin(3x) \cos(3x) \] This can be further simplified using the identity \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \): \[ f'(x) = 12 \sin(6x) \] 2. Now we evaluate \( f' \left(\frac{1}{4} \pi\right) \): \[ f' \left(\frac{1}{4} \pi\right) = 12 \sin\left(6 \cdot \frac{1}{4} \pi\right) = 12 \sin\left(\frac{3}{2} \pi\right) \] We know that \( \sin\left(\frac{3}{2} \pi\right) = -1 \). 3. Therefore, substituting this back: \[ f' \left(\frac{1}{4} \pi\right) = 12 \cdot (-1) = -12 \] Thus, the final answer is: \[ f' \left(\frac{1}{4} \pi\right) = -12 \]