Pregunta
upstudy study bank question image url

\( C=18 \pi \) find the area in terms of pi

Ask by Mullins Bowman. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area is \( 81\pi \).

Solución

To find the area of a circle given its circumference, you can follow these steps: 1. **Circumference Formula:** The circumference \( C \) of a circle is related to its radius \( r \) by the formula: \[ C = 2\pi r \] 2. **Solve for the Radius:** Given \( C = 18\pi \), set up the equation: \[ 2\pi r = 18\pi \] Divide both sides by \( 2\pi \): \[ r = \frac{18\pi}{2\pi} = 9 \] 3. **Area Formula:** The area \( A \) of a circle is given by: \[ A = \pi r^2 \] 4. **Calculate the Area:** Substitute \( r = 9 \) into the area formula: \[ A = \pi (9)^2 = \pi \times 81 = 81\pi \] **Final Answer:** \[ \boxed{81\pi} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the area when the circumference \( C = 18\pi \), we first need to find the radius. The formula for the circumference of a circle is: \[ C = 2\pi r \] Setting \( 18\pi = 2\pi r \), we can solve for \( r \): \[ 18 = 2r \implies r = 9 \] Now, we can find the area \( A \) using the formula for the area of a circle: \[ A = \pi r^2 \] Substituting \( r = 9 \): \[ A = \pi (9^2) = \pi \times 81 = 81\pi \] Thus, the area in terms of pi is \( 81\pi \). But did you know that in ancient civilizations, people were already aware of the relationship between a circle's circumference and area? The Egyptians and Babylonians were using approximations of \( \pi \) to perform calculations related to fields and circular structures over 3,000 years ago! Their methods may not have had the precision we use today, but they laid the groundwork for geometry as we know it. Circles aren't just mathematical curiosities; they’re everywhere in our daily lives! From the wheels on your car to pizza sizes and even the shape of planets, circles play a crucial role in various fields. Engineers use circular designs for bridges, and artists utilize them for creating visually appealing compositions. Understanding the area and circumference of circles can help in practical scenarios, such as landscaping a circular garden or planning the layout of a circular pool, turning math into a tangible experience!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad