Pregunta
upstudy study bank question image url

(3) \( a^{3}-27 \) (6) \( 27 p^{3}-8 q^{3} \) (9) \( -125+p^{3} \) (12)* \( x^{6}-y^{6} \) (Careful!) (15) \( \frac{x^{3}}{8}+\frac{64}{y^{3}} \)

Ask by Park Edwards. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the factored forms of the given expressions: 1. \( a^{3} - 27 = (a - 3)(a^{2} + 3a + 9) \) 2. \( 27p^{3} - 8q^{3} = (3p - 2q)(9p^{2} + 6pq + 4q^{2}) \) 3. \( -125 + p^{3} = (p - 5)(p^{2} + 5p + 25) \) 4. \( x^{6} - y^{6} = (x - y)(x + y)(x^{2} + xy + y^{2})(x^{2} - xy + y^{2}) \) 5. \( \frac{x^{3}}{8} + \frac{64}{y^{3}} = \left(\frac{x}{2} + \frac{4}{y}\right)\left(\frac{x^{2}}{4} - \frac{2x}{y} + \frac{16}{y^{2}}\right) \)

Solución

Sure, let's factor each of the given expressions step by step. --- ### (3) \( a^{3} - 27 \) This is a **difference of cubes** since \( 27 = 3^3 \). \[ a^{3} - 3^{3} = (a - 3)(a^{2} + 3a + 9) \] **Factored Form:** \[ a^{3} - 27 = (a - 3)(a^{2} + 3a + 9) \] --- ### (6) \( 27p^{3} - 8q^{3} \) This is also a **difference of cubes** where \( 27p^{3} = (3p)^3 \) and \( 8q^{3} = (2q)^3 \). \[ (3p)^{3} - (2q)^{3} = (3p - 2q)\left[(3p)^2 + 3p \cdot 2q + (2q)^2\right] \] \[ = (3p - 2q)(9p^{2} + 6pq + 4q^{2}) \] **Factored Form:** \[ 27p^{3} - 8q^{3} = (3p - 2q)(9p^{2} + 6pq + 4q^{2}) \] --- ### (9) \( -125 + p^{3} \) Rewrite the expression to identify it as a **difference of cubes**. Note that \( -125 = (-5)^3 \). \[ p^{3} - 5^{3} = (p - 5)\left[p^{2} + 5p + 25\right] \] **Factored Form:** \[ -125 + p^{3} = (p - 5)(p^{2} + 5p + 25) \] --- ### (12)* \( x^{6} - y^{6} \) *(Careful!)* This expression is a **difference of squares**, which can be further factored into a product of **difference and sum of cubes**. 1. **First, apply the difference of squares:** \[ x^{6} - y^{6} = (x^{3})^{2} - (y^{3})^{2} = (x^{3} - y^{3})(x^{3} + y^{3}) \] 2. **Now, factor each part using the difference and sum of cubes formulas:** \[ x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}) \] \[ x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2}) \] 3. **Combine all factors:** \[ x^{6} - y^{6} = (x - y)(x + y)(x^{2} + xy + y^{2})(x^{2} - xy + y^{2}) \] **Factored Form:** \[ x^{6} - y^{6} = (x - y)(x + y)(x^{2} + xy + y^{2})(x^{2} - xy + y^{2}) \] --- ### (15) \( \frac{x^{3}}{8} + \frac{64}{y^{3}} \) First, rewrite the expression to recognize it as a **sum of cubes**: \[ \frac{x^{3}}{8} + \frac{64}{y^{3}} = \left(\frac{x}{2}\right)^{3} + \left(\frac{4}{y}\right)^{3} \] Now, apply the sum of cubes formula: \[ a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}) \] Here, \( a = \frac{x}{2} \) and \( b = \frac{4}{y} \): \[ \left(\frac{x}{2} + \frac{4}{y}\right)\left(\left(\frac{x}{2}\right)^{2} - \frac{x}{2} \cdot \frac{4}{y} + \left(\frac{4}{y}\right)^{2}\right) \] Simplify inside the parentheses: \[ = \left(\frac{x}{2} + \frac{4}{y}\right)\left(\frac{x^{2}}{4} - \frac{2x}{y} + \frac{16}{y^{2}}\right) \] **Factored Form:** \[ \frac{x^{3}}{8} + \frac{64}{y^{3}} = \left(\frac{x}{2} + \frac{4}{y}\right)\left(\frac{x^{2}}{4} - \frac{2x}{y} + \frac{16}{y^{2}}\right) \] --- Feel free to reach out if you need further clarification on any of these factorizations!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the first expression \( a^{3}-27 \) can be recognized as a difference of cubes? This means it can be factored into \( (a-3)(a^{2}+3a+9) \). This nifty little pattern helps simplify and solve various algebraic equations efficiently—like finding roots or analyzing behaviors of functions! When dealing with the expression \( x^{6}-y^{6} \) of the fourth problem, remember that it is also a difference of squares! You can further factor this into \( (x^{3}-y^{3})(x^{3}+y^{3}) \). Plus, each of those factors can be factored further, providing you several layers of insight into equations. It's like peeling an onion, but way more fun when you’re solving problems!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad