Pregunta
upstudy study bank question image url

The time taken to complete a motorcycle race is normally distributed, with an average time ( \( \mu \) ) of 2.5 hours and a standard deviation \( (\sigma) \) of 0.5 hours. What is the probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race?

Ask by Daniels Perkins. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race is approximately 7.81%.

Solución

To find the probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race, we can use the properties of the normal distribution. ### Step 1: Standardize the values We will convert the times into z-scores using the formula: \[ z = \frac{x - \mu}{\sigma} \] where: - \( x \) is the value we are standardizing, - \( \mu = 2.5 \) hours (mean), - \( \sigma = 0.5 \) hours (standard deviation). ### Step 2: Calculate the z-scores 1. For \( x = 2.35 \): \[ z_1 = \frac{2.35 - 2.5}{0.5} \] 2. For \( x = 2.45 \): \[ z_2 = \frac{2.45 - 2.5}{0.5} \] Let's calculate these z-scores. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2.45-2.5\right)}{0.5}\) - step1: Remove the parentheses: \(\frac{2.45-2.5}{0.5}\) - step2: Subtract the numbers: \(\frac{-0.05}{0.5}\) - step3: Convert the expressions: \(\frac{-\frac{1}{20}}{\frac{1}{2}}\) - step4: Multiply by the reciprocal: \(-\frac{1}{20}\times 2\) - step5: Reduce the numbers: \(-\frac{1}{10}\times 1\) - step6: Multiply: \(-\frac{1}{10}\) Calculate or simplify the expression \( (2.35 - 2.5) / 0.5 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(2.35-2.5\right)}{0.5}\) - step1: Remove the parentheses: \(\frac{2.35-2.5}{0.5}\) - step2: Subtract the numbers: \(\frac{-0.15}{0.5}\) - step3: Convert the expressions: \(\frac{-\frac{3}{20}}{\frac{1}{2}}\) - step4: Multiply by the reciprocal: \(-\frac{3}{20}\times 2\) - step5: Reduce the numbers: \(-\frac{3}{10}\times 1\) - step6: Multiply: \(-\frac{3}{10}\) It seems that I cannot directly calculate the probabilities for the z-scores using the current tools. However, I can provide the general approach to find these probabilities. ### Step 4: Use the standard normal distribution You can use a standard normal distribution table or a calculator to find the probabilities: 1. For \( z_1 = -0.3 \): - Look up the value in the z-table or use a calculator to find \( P(Z < -0.3) \). 2. For \( z_2 = -0.1 \): - Look up the value in the z-table or use a calculator to find \( P(Z < -0.1) \). ### Step 5: Calculate the probability between the two z-scores The probability that a randomly selected cyclist will take between 2.35 and 2.45 hours is given by: \[ P(2.35 < X < 2.45) = P(Z < z_2) - P(Z < z_1) \] ### Example Values Using standard normal distribution tables: - \( P(Z < -0.3) \approx 0.3821 \) - \( P(Z < -0.1) \approx 0.4602 \) ### Final Calculation Now, we can calculate the probability: \[ P(2.35 < X < 2.45) = P(Z < -0.1) - P(Z < -0.3) \approx 0.4602 - 0.3821 \] Let's calculate this final probability. Calculate the value by following steps: - step0: Calculate: \(0.4602-0.3821\) - step1: Subtract the numbers: \(0.0781\) The probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race is approximately: \[ P(2.35 < X < 2.45) \approx 0.0781 \] ### Conclusion Thus, the probability is about **0.0781**, or **7.81%**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that a randomly selected cyclist will take between 2.35 and 2.45 hours to complete the race, we first need to calculate the z-scores for both times using the formula: \( z = \frac{(X - \mu)}{\sigma} \). For 2.35 hours: \( z_1 = \frac{(2.35 - 2.5)}{0.5} = \frac{-0.15}{0.5} = -0.3 \) For 2.45 hours: \( z_2 = \frac{(2.45 - 2.5)}{0.5} = \frac{-0.05}{0.5} = -0.1 \) Next, we can look up these z-scores in the standard normal distribution table. The area to the left of \( z_1 = -0.3 \) is approximately 0.3821, and the area to the left of \( z_2 = -0.1 \) is approximately 0.4602. Now, we subtract the two probabilities to find the probability of the cyclist finishing between 2.35 and 2.45 hours: \( P(2.35 < X < 2.45) = P(Z < -0.1) - P(Z < -0.3) \) \( P(2.35 < X < 2.45) = 0.4602 - 0.3821 = 0.0781 \) Thus, the probability that a randomly selected cyclist will take between 2.35 and 2.45 hours is approximately 0.0781, or 7.81%. --- Imagine the thrills of a motorcycle race! The intensity, the speed, the excitement of watching competitors battle through time! In a perfectly set scene, the average completion time tells us a lot about performance and strategy. The race track transforms into a vast playground for data analysis, where every second is accounted for, and knowing how much time racers take can help organizers create better events or even train cyclists more effectively. When diving into statistics, many people trip over z-scores. It’s easy to forget the basic calculations, especially when numbers start dancing before your eyes. One common pitfall is failing to use the proper formula or misreading the z-table. Remember to always align your calculated z-values with the cumulative distribution values – and double-checking never hurts! Embrace this mathematical safari, and you’ll be racing ahead of the competition in no time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad