Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 29 and standard deviation 4 . What is the probability that \( X \) is between 34 and 36 ? Write your answer as a decimal rounded to the nearest thousandth.

Ask by Sandoval Garrett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 34 and 36 is **0.066**.

Solución

To find the probability that \( X \) is between 34 and 36, where \( X \) is normally distributed with a mean (\( \mu \)) of 29 and a standard deviation (\( \sigma \)) of 4, follow these steps: 1. **Standardize the Values:** Convert the \( X \)-values to \( Z \)-scores using the formula: \[ Z = \frac{X - \mu}{\sigma} \] - For \( X = 34 \): \[ Z_1 = \frac{34 - 29}{4} = \frac{5}{4} = 1.25 \] - For \( X = 36 \): \[ Z_2 = \frac{36 - 29}{4} = \frac{7}{4} = 1.75 \] 2. **Use the Standard Normal Distribution Table:** - Find the cumulative probability for \( Z = 1.25 \) and \( Z = 1.75 \). - \( \Phi(1.25) \approx 0.8944 \) - \( \Phi(1.75) \approx 0.95994 \) 3. **Calculate the Probability:** Subtract the smaller cumulative probability from the larger one: \[ P(34 \leq X \leq 36) = \Phi(1.75) - \Phi(1.25) = 0.95994 - 0.8944 = 0.06554 \] 4. **Round to the Nearest Thousandth:** \[ 0.06554 \approx 0.066 \] **Final Answer:** The probability that \( X \) is between 34 and 36 is **0.066**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 34 and 36 for a normally distributed random variable with mean 29 and standard deviation 4, we can standardize the values using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] For \( X = 34 \): \[ Z_{34} = \frac{34 - 29}{4} = \frac{5}{4} = 1.25 \] For \( X = 36 \): \[ Z_{36} = \frac{36 - 29}{4} = \frac{7}{4} = 1.75 \] Next, we can use the standard normal distribution table (or a calculator) to find the probabilities corresponding to these Z-scores: - The probability of \( Z < 1.25 \) is approximately 0.8944. - The probability of \( Z < 1.75 \) is approximately 0.9599. Now, subtract the two probabilities to find the probability that \( X \) falls between 34 and 36: \[ P(34 < X < 36) = P(Z < 1.75) - P(Z < 1.25) \approx 0.9599 - 0.8944 = 0.0655 \] Rounding this to the nearest thousandth: The probability that \( X \) is between 34 and 36 is approximately **0.066**.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad