Pregunta
Find the inverse function. \[ f(x)=\frac{2 x+5}{4} \] \( f^{-1}(x)=\frac{[?] x+\square}{} \)
Ask by Johnston Burgess. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The inverse function is \( f^{-1}(x) = \frac{4x - 5}{2} \).
Solución
To find the inverse function \( f^{-1}(x) \) of the given function \( f(x) = \frac{2x + 5}{4} \), follow these steps:
1. **Start with the original function:**
\[
y = \frac{2x + 5}{4}
\]
2. **Swap \( x \) and \( y \) to find the inverse:**
\[
x = \frac{2y + 5}{4}
\]
3. **Solve for \( y \):**
\[
4x = 2y + 5
\]
\[
2y = 4x - 5
\]
\[
y = \frac{4x - 5}{2}
\]
4. **Write the inverse function:**
\[
f^{-1}(x) = \frac{4x - 5}{2}
\]
So, the inverse function is:
\[
f^{-1}(x) = \frac{4x - 5}{2}
\]
**Answer:**
After simplifying, the inverse is (4 × x – 5) divided by 2. Thus,
f⁻¹(x) = (4x − 5)/2
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the inverse function, we start by replacing \( f(x) \) with \( y \): \[ y = \frac{2x + 5}{4} \] Now, we solve for \( x \) in terms of \( y \): 1. Multiply both sides by 4: \[ 4y = 2x + 5 \] 2. Subtract 5 from both sides: \[ 4y - 5 = 2x \] 3. Divide by 2: \[ x = \frac{4y - 5}{2} \] Now, we replace \( y \) with \( x \) to express the inverse function: \[ f^{-1}(x) = \frac{4x - 5}{2} \] So, in the requested format: \( f^{-1}(x)=\frac{4x - 5}{2} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium