Pregunta
upstudy study bank question image url

Given the following position function: (position is in ft , time is in sec ) \[ s(\mathrm{t})=\frac{4 \mathrm{t}+5}{\mathrm{t}+1} \] Find the velocity at \( \mathrm{t}=2 \) \( \mathrm{v}(2)=[?] \frac{\mathrm{ft}}{\mathrm{sec}} \)

Ask by Harrington Ross. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The velocity at \( \mathrm{t} = 2 \) seconds is \( -\frac{1}{9} \) ft/sec.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the velocity at \( t = 2 \), we first need to determine the derivative of the position function \( s(t) \). The position function is given by \[ s(t) = \frac{4t + 5}{t + 1} \] Using the quotient rule for differentiation, where if \( u(t) = 4t + 5 \) and \( v(t) = t + 1 \), we find \( s'(t) = \frac{u'v - uv'}{v^2} \). Calculating the derivatives: - \( u' = 4 \) - \( v' = 1 \) Applying the quotient rule: \[ s'(t) = \frac{(4)(t + 1) - (4t + 5)(1)}{(t + 1)^2} \] Simplifying: \[ s'(t) = \frac{4t + 4 - 4t - 5}{(t + 1)^2} = \frac{-1}{(t + 1)^2} \] Now, plug in \( t = 2 \): \[ v(2) = s'(2) = \frac{-1}{(2 + 1)^2} = \frac{-1}{3^2} = \frac{-1}{9} \] Thus, the velocity at \( t = 2 \) is \[ \boxed{-\frac{1}{9}} \frac{\text{ft}}{\text{sec}} \]

preguntas relacionadas

Latest Calculus Questions

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad