Pregunta
upstudy study bank question image url

(a) Find the function \( (f \circ g)(x) \). \( (f \circ g)(x)=\frac{1}{\sqrt{x+3}} \) Find the domain of \( (f \circ g)(x) \).

Ask by Gross Lynch. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain of \( (f \circ g)(x) = \frac{1}{\sqrt{x + 3}} \) is all real numbers greater than \(-3\), which is written as \( (-3, \infty) \).

Solución

To determine the domain of the composite function \( (f \circ g)(x) = \frac{1}{\sqrt{x + 3}} \), we need to identify all real numbers \( x \) for which the expression is defined. This involves two key considerations: 1. **The Square Root is Defined:** The expression inside the square root, \( x + 3 \), must be non-negative because the square root of a negative number is not a real number. Therefore: \[ x + 3 \geq 0 \implies x \geq -3 \] 2. **The Denominator is Not Zero:** The denominator \( \sqrt{x + 3} \) cannot be zero because division by zero is undefined. This means: \[ \sqrt{x + 3} \neq 0 \implies x + 3 \neq 0 \implies x \neq -3 \] Combining these two conditions: - \( x \geq -3 \) ensures the square root is defined. - \( x \neq -3 \) ensures the denominator is not zero. Therefore, the domain of \( (f \circ g)(x) \) is all real numbers **greater than** \(-3\). **In Interval Notation:** \[ \boxed{\,(-3,\ \infty)\,} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the function \( (f \circ g)(x) \), we start with the given function \( (f \circ g)(x) = \frac{1}{\sqrt{x+3}} \). The composition of functions means that we will substitute \( g(x) \) into \( f(x) \), where \( f(x) \) presumably represents the outer function while \( g(x) \) represents the inner function. Next, to determine the domain of \( (f \circ g)(x) \), we must consider the expression \( \frac{1}{\sqrt{x+3}} \). The square root function requires the argument to be non-negative, thus \( x + 3 \geq 0 \) or \( x \geq -3 \). Furthermore, the denominator of a function cannot be zero, which means \( \sqrt{x + 3} \neq 0 \) or \( x \neq -3 \). Therefore, the domain of \( (f \circ g)(x) \) is all real numbers \( x \) such that \( x > -3 \). So, the domain of \( (f \circ g)(x) \) can be expressed in interval notation as: \[ (-3, \infty) \] Now, let's explore some engaging additional insights! Did you know that the concept of function composition dates back to ancient mathematics? The Greeks primarily dealt with linear functions, but it wasn’t until the rise of calculus in the 17th century that more complex functions were explored in-depth. Fast forward to today, and we use composition in everything from computer programming to animation—allowing different functions to work together seamlessly! In practical terms, function composition is like a recipe: you take one ingredient (function) and mix it into another to create a delightful dish (resulting function). A common mistake when dealing with composed functions is forgetting to check both functions' individual domains. Always remember to ensure both functions are valid for the input you’re working with to avoid nasty surprises!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad