\[ \begin{array}{l} A B=4,9 \mathrm{~cm}, A D=8,5 \mathrm{~cm}, A F-11,8 \mathrm{~cm} \text { and } A H=13,9 \mathrm{~cm} \\ A C=5,4 \mathrm{~cm}, A E=9,4 \mathrm{~cm}, A G=13 \mathrm{~cm} \text { and } A J=15,3 \mathrm{~cm} \\ C B=2,3 \mathrm{~cm}, E D=4 \mathrm{~cm}, G H=5,5 \mathrm{~cm} \text { and } J I=6,4 \mathrm{~cm} \end{array} \] I Complete the similar triangles by writing the letters of the triangles in the correct erder. \( \triangle A B C \| \Delta \) \( \qquad \) III \( \Delta \) \( \qquad \) IIII \( \Delta \) \( \qquad \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To complete the similar triangles alongside \( \triangle ABC \), we can use the properties of triangles formed by parallel lines or proportional sides. Given the relationships indicated, we can deduce that: 1. \( \triangle ABE \) is similar to \( \triangle ADH \). 2. \( \triangle ACG \) is similar to \( \triangle AJI \). 3. \( \triangle ABC \) maintains properties similar to \( \triangle ADF \). These relationships can be useful to validate proportional segments and deduce additional properties about geometrical figures in triangulation. Next, let’s think of how these similarities could help in real-world applications. Architects often employ similar triangles to ensure proportional designs in their blueprints. By maintaining similar ratios, they can guarantee structural integrity and aesthetic balance, showcasing the beauty of geometry in tangible forms like bridges and buildings.