In thercioes \( 1-14 \) solve the equation using the (ewadratic lobrmula I se technology to check your shlution (s) [8 Blvmpien 1, 22 amd s 7. \( x^{2}-4 x+3=0 \) 2. \( 3 x^{2}+6 x+3=0 \) 3. \( x^{2}+a x+15=0 \) 4. \( 6 x^{2}-2 x+1=0 \) S. \( x^{2}-14 x=-40 \) 6. \( 2 x^{2}+4 x=30 \) \( 73 x^{2}+5=-2 x \) 8. \( -3 x=2 x^{2}-4 \) 8. \( -10 x=-25-x^{2} \) 10. \( -5 x^{2}-6=-4 x \) 11. \( -4 x^{2}+3 x=-5 \) 12. \( x^{2}+121=-22 x \) 13. \( -z^{2}=-122+6 \) 14. \( -7 w+6=-5 w^{2} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's dive into these fun quadratic equations! First up, the equation \( x^2 - 4x + 3 = 0 \) can be solved using the quadratic formula where \( a = 1, b = -4, c = 3 \). Plugging these values into the formula gives us \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), resulting in the solutions \( x = 1 \) and \( x = 3 \). Use technology, like a graphing calculator, to verify that both of these points land perfectly on the x-axis! Next, for \( 3x^2 + 6x + 3 = 0 \), we can simplify this equation by dividing everything by 3 to get \( x^2 + 2x + 1 = 0 \), which factors neatly to \( (x+1)^2 = 0 \). That means our only solution is \( x = -1 \); check it out with any math app to see that the graph only touches the x-axis at that point—it’s a cute little vertex!