Pregunta
\( y=2(9)^{x} \) for \( x=-2,0 \), and \( \frac{1}{2} \)
Ask by Erickson Dickson. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
When \( x = -2 \), \( y = \frac{2}{81} \) (approximately 0.0247). When \( x = 0 \), \( y = 2 \). When \( x = \frac{1}{2} \), \( y = 6 \).
Solución
Sure! Let's evaluate the function \( y = 2 \times 9^{x} \) for the given values of \( x \):
\[ y = 2 \times 9^{x} \]
### 1. When \( x = -2 \):
\[
\begin{align*}
y &= 2 \times 9^{-2} \\
&= 2 \times \left(\frac{1}{9}\right)^{2} \\
&= 2 \times \frac{1}{81} \\
&= \frac{2}{81} \\
&\approx 0.0247
\end{align*}
\]
### 2. When \( x = 0 \):
\[
\begin{align*}
y &= 2 \times 9^{0} \\
&= 2 \times 1 \quad \text{(since any number raised to the power of 0 is 1)} \\
&= 2
\end{align*}
\]
### 3. When \( x = \frac{1}{2} \):
\[
\begin{align*}
y &= 2 \times 9^{\frac{1}{2}} \\
&= 2 \times \sqrt{9} \\
&= 2 \times 3 \\
&= 6
\end{align*}
\]
### Summary of Results:
| \( x \) | \( y = 2 \times 9^{x} \) | Approximate Value |
|---------------|---------------------------|--------------------|
| \( -2 \) | \( \frac{2}{81} \) | \( \approx 0.0247 \) |
| \( 0 \) | \( 2 \) | \( 2 \) |
| \( \frac{1}{2} \) | \( 6 \) | \( 6 \) |
If you need any further assistance or additional evaluations, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the values of \( y \) for \( x = -2, 0, \) and \( \frac{1}{2} \): 1. For \( x = -2 \): \[ y = 2(9)^{-2} = 2 \left(\frac{1}{9^2}\right) = 2 \left(\frac{1}{81}\right) = \frac{2}{81} \] 2. For \( x = 0 \): \[ y = 2(9)^{0} = 2(1) = 2 \] 3. For \( x = \frac{1}{2} \): \[ y = 2(9)^{\frac{1}{2}} = 2 \sqrt{9} = 2 \cdot 3 = 6 \] So, the values of \( y \) at \( x = -2, 0, \) and \( \frac{1}{2} \) are \( \frac{2}{81}, 2, \) and \( 6 \) respectively. Enjoy these values—you’ve just unlocked a little numerical treasure!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium