Pregunta
upstudy study bank question image url

A binomial experiment with probability of success \( p=0.3 \) and \( n=6 \) trials is conducted. What is the probability that the experiment results in exactly 1 success? Do not round your intermediate computations, and round your answer to three decimal places. (If necessary, consult a list of formulas.)

Ask by Cook Pena. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of exactly 1 success is 0.303

Solución

To find the probability of exactly 1 success in a binomial experiment with \( n = 6 \) trials and probability of success \( p = 0.3 \), we use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Plugging in the values: \[ P(X = 1) = \binom{6}{1} (0.3)^1 (0.7)^5 \] Calculate each component: 1. **Combination**: \[ \binom{6}{1} = 6 \] 2. **Probability of success**: \[ (0.3)^1 = 0.3 \] 3. **Probability of failure**: \[ (0.7)^5 = 0.16807 \] Now, multiply these together: \[ P(X = 1) = 6 \times 0.3 \times 0.16807 = 6 \times 0.050421 = 0.302526 \] Rounded to three decimal places, the probability is: \[ P(X = 1) \approx 0.303 \] **Answer:** The probability of exactly 1 success is 0.303

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability of exactly 1 success in a binomial experiment with \( n = 6 \) trials and a probability of success \( p = 0.3 \), we can use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Where: - \( \binom{n}{k} \) is the binomial coefficient, - \( k \) is the number of successes, - \( p \) is the probability of success, - \( (1-p) \) is the probability of failure. In this case, \( n = 6 \), \( k = 1 \), and \( p = 0.3 \). First, we calculate the binomial coefficient: \[ \binom{6}{1} = \frac{6!}{1!(6-1)!} = \frac{6}{1} = 6 \] Next, we calculate \( p^k \) and \( (1-p)^{n-k} \): \[ p^1 = (0.3)^1 = 0.3 \] \[ (1-p)^{n-k} = (0.7)^{6-1} = (0.7)^5 \] Calculate \( (0.7)^5 \): \[ (0.7)^5 = 0.16807 \] Now we can plug everything back into the formula: \[ P(X = 1) = \binom{6}{1} \cdot p^1 \cdot (0.7)^5 = 6 \cdot 0.3 \cdot 0.16807 \] Calculating that step: \[ P(X = 1) = 6 \cdot 0.3 \cdot 0.16807 = 6 \cdot 0.050421 = 0.302526 \] Finally, rounding to three decimal places gives: \[ P(X = 1) \approx 0.303 \] So, the probability that the experiment results in exactly 1 success is approximately **0.303**.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad