Pregunta
Find the value of the determinant. Show your work \( \left[\begin{array}{cc}12 & -7 \\ -4 & 3\end{array}\right] \)
Ask by Johnston John. in the United States
Jan 26,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The determinant of the matrix is 8.
Solución
To find the determinant of the given \( 2 \times 2 \) matrix:
\[
\begin{pmatrix}
12 & -7 \\
-4 & 3 \\
\end{pmatrix}
\]
we can use the formula for the determinant of a \( 2 \times 2 \) matrix:
\[
\text{Determinant} = ad - bc
\]
where the matrix is:
\[
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix}
\]
**Step-by-Step Calculation:**
1. **Identify the elements:**
- \( a = 12 \)
- \( b = -7 \)
- \( c = -4 \)
- \( d = 3 \)
2. **Apply the determinant formula:**
\[
\text{Determinant} = (a \times d) - (b \times c)
\]
3. **Substitute the values:**
\[
\text{Determinant} = (12 \times 3) - (-7 \times -4)
\]
4. **Perform the multiplications:**
\[
12 \times 3 = 36
\]
\[
-7 \times -4 = 28
\]
5. **Subtract the second product from the first:**
\[
\text{Determinant} = 36 - 28 = 8
\]
**Final Answer:**
The determinant of the matrix is **8**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the value of the determinant of the matrix \[ \left[\begin{array}{cc}12 & -7 \\ -4 & 3\end{array}\right], \] we can use the formula for the determinant of a 2x2 matrix given by \[ \text{det}\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] = ad - bc. \] Here, \( a = 12 \), \( b = -7 \), \( c = -4 \), and \( d = 3 \). Now, substitute these values into the determinant formula: \[ \text{det} = (12)(3) - (-7)(-4). \] Calculating each part: \[ \text{det} = 36 - 28 = 8. \] Therefore, the value of the determinant is \[ \boxed{8}. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium