1.1 If \( p \in\{0 ; 1 ; 2 ; 3 ; 4\} \), determine the value of p such that \( \sqrt{\frac{16}{p-2}} \) 1.1 .1 is irrational 1.1 .2 is non real 1.1 .3 is undefined 0,
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the values of \( p \) that make \( \sqrt{\frac{16}{p-2}} \) irrational, non-real, or undefined, let's break it down: For \( \sqrt{\frac{16}{p-2}} \) to be undefined, the denominator must equal zero. Therefore, when \( p - 2 = 0 \) or \( p = 2 \), the expression becomes undefined. To find when it's non-real, we look for when \( p - 2 < 0\). If \( p \) is any value less than 2, \( \sqrt{\frac{16}{p-2}} \) would yield a negative radicand (since 16 is non-negative and can't balance out a negative denominator), thus it’s non-real. This applies for \( p = 0, 1 \). For it to be irrational, the denominator \( p - 2 \) must not be a perfect square. When \( p = 3 \), \( 3 - 2 = 1 \) (a perfect square), which makes it rational. For \( p = 4 \), \( 4 - 2 = 2 \) (not a perfect square). Hence, the expression is irrational when \( p = 4\) and defined. In summary: - Undefined: \( p = 2 \) - Non-real: \( p = 0, 1 \) - Irrational: \( p = 4 \)