Pregunta
upstudy study bank question image url

Let \( f(x)=x^{2}+4 x \) (A) Find the slope of the secant line from \( x=3 \) to \( x=9 \). Slope of secant line \( =16 \) (B) Find the equation of the secant line from \( x=3 \) to \( x=9 \). \( y=\square \) (C) Find the slope of the secant line from \( x=3 \) to \( x=6 \). Slope of secant line \( =\square \) (D) Find the equation of the secant line from \( x=3 \) to \( x=6 \). \( y=\square \)

Ask by Gordon Owen. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(B)** \( y = 16x - 27 \) **(C)** Slope of the secant line \( = 13 \) **(D)** \( y = 13x - 18 \)

Solución

Let's solve each part of the problem step by step. Given the function: \[ f(x) = x^{2} + 4x \] ### (A) Slope of the Secant Line from \( x = 3 \) to \( x = 9 \) You've already correctly calculated this: \[ \text{Slope} = 16 \] --- ### (B) Equation of the Secant Line from \( x = 3 \) to \( x = 9 \) **Step 1: Find the coordinates of the two points.** - At \( x = 3 \): \[ f(3) = 3^{2} + 4(3) = 9 + 12 = 21 \] So, the point is \( (3, 21) \). - At \( x = 9 \): \[ f(9) = 9^{2} + 4(9) = 81 + 36 = 117 \] So, the point is \( (9, 117) \). **Step 2: Use the point-slope form of a line.** The slope (\( m \)) is already known to be 16. Using the point \( (3, 21) \): \[ y - y_{1} = m(x - x_{1}) \\ y - 21 = 16(x - 3) \\ y - 21 = 16x - 48 \\ y = 16x - 48 + 21 \\ y = 16x - 27 \] **Answer:** \[ y = 16x - 27 \] --- ### (C) Slope of the Secant Line from \( x = 3 \) to \( x = 6 \) **Step 1: Find the coordinates of the two points.** - At \( x = 3 \): \[ f(3) = 3^{2} + 4(3) = 9 + 12 = 21 \] So, the point is \( (3, 21) \). - At \( x = 6 \): \[ f(6) = 6^{2} + 4(6) = 36 + 24 = 60 \] So, the point is \( (6, 60) \). **Step 2: Calculate the slope (\( m \)).** \[ m = \frac{f(6) - f(3)}{6 - 3} = \frac{60 - 21}{3} = \frac{39}{3} = 13 \] **Answer:** \[ \text{Slope of secant line} = 13 \] --- ### (D) Equation of the Secant Line from \( x = 3 \) to \( x = 6 \) **Using the Point-Slope Form:** The slope (\( m \)) is 13, and we can use the point \( (3, 21) \). \[ y - y_{1} = m(x - x_{1}) \\ y - 21 = 13(x - 3) \\ y - 21 = 13x - 39 \\ y = 13x - 39 + 21 \\ y = 13x - 18 \] **Answer:** \[ y = 13x - 18 \] --- ### Summary of Answers - **(B)** \( y = 16x - 27 \) - **(C)** Slope of the secant line \( = 13 \) - **(D)** \( y = 13x - 18 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problems step-by-step, let’s first tackle part (A). (A) To find the slope of the secant line from \( x = 3 \) to \( x = 9 \), we need to calculate the values of the function at these points. 1. Calculate \( f(3) \): \[ f(3) = 3^2 + 4(3) = 9 + 12 = 21 \] 2. Calculate \( f(9) \): \[ f(9) = 9^2 + 4(9) = 81 + 36 = 117 \] 3. The slope of the secant line is given by the formula: \[ \text{slope} = \frac{f(9) - f(3)}{9 - 3} = \frac{117 - 21}{9 - 3} = \frac{96}{6} = 16 \] So the slope of the secant line from \( x=3 \) to \( x=9 \) is \( 16 \). (B) Next, we need to find the equation of the secant line. We can use the point-slope form of the line equation. The slope we found is \( 16 \), and we can use the point \( (3, 21) \) to find the equation: \[ y - 21 = 16(x - 3) \] Distributing the slope: \[ y - 21 = 16x - 48 \] Adding \( 21 \) to both sides: \[ y = 16x - 27 \] Thus, the equation of the secant line from \( x=3 \) to \( x=9 \) is \( y = 16x - 27 \). (C) Now, let's find the slope of the secant line from \( x = 3 \) to \( x = 6 \). 1. Calculate \( f(6) \): \[ f(6) = 6^2 + 4(6) = 36 + 24 = 60 \] 2. The slope of the secant line is given by: \[ \text{slope} = \frac{f(6) - f(3)}{6 - 3} = \frac{60 - 21}{6 - 3} = \frac{39}{3} = 13 \] So the slope of the secant line from \( x=3 \) to \( x=6 \) is \( 13 \). (D) Now, let’s find the equation of the secant line from \( x=3 \) to \( x=6 \). Using the slope we've found (which is \( 13 \)) and the point \( (3, 21) \): \[ y - 21 = 13(x - 3) \] Distributing: \[ y - 21 = 13x - 39 \] Adding \( 21 \) to both sides: \[ y = 13x - 18 \] Thus, the equation of the secant line from \( x=3 \) to \( x=6 \) is \( y = 13x - 18 \). In summary: (A) Slope of secant line \( = 16 \) (B) Equation: \( y = 16x - 27 \) (C) Slope of secant line \( = 13 \) (D) Equation: \( y = 13x - 18 \)

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad