Find a linear function \( h \), given \( h(3)=-7 \) and \( h(-1)=13 \). Then find \( h(4) \). \( h(x)=\square \) (Type an expression using \( x \) as the variable. Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the linear function \( h(x) \), we start with the general form \( h(x) = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. First, we need to calculate the slope \( m \) using the two points given: \( (3, -7) \) and \( (-1, 13) \). \[ m = \frac{h(3) - h(-1)}{3 - (-1)} = \frac{-7 - 13}{3 + 1} = \frac{-20}{4} = -5 \] Now that we have the slope \( m = -5 \), we can use one of the points to find \( b \). We'll use the point \( (3, -7) \): \[ -7 = -5(3) + b \implies -7 = -15 + b \implies b = -7 + 15 = 8 \] Now we have both \( m \) and \( b \). Therefore, the function is: \[ h(x) = -5x + 8 \] Next, we find \( h(4) \): \[ h(4) = -5(4) + 8 = -20 + 8 = -12 \] Thus, the final expression for \( h(x) \) is: \[ h(x) = -5x + 8. \] And the value of \( h(4) \) is: \[ h(4) = -12. \]