Pregunta
upstudy study bank question image url

IV. In a job fair, 3000 applicants applied for a job, their mean age was found to be 28 with standard deviation for 4 years. a. Draw a normal curve distribution showing the z-score and the raw scores. b. How many applicants are above 32 years old? c. How many have ages between 24 and 32 years?

Ask by Wood Warner. in the Philippines
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **a.** The normal distribution curve shows key ages at z-scores of -2 (20 years), -1 (24 years), 0 (28 years), +1 (32 years), and +2 (36 years). - **b.** Approximately 476 applicants are above 32 years old. - **c.** About 2,048 applicants are between 24 and 32 years old.

Solución

Sure, let's tackle each part of the problem step by step. ### Given: - **Total applicants**: 3,000 - **Mean age (\( \mu \))**: 28 years - **Standard deviation (\( \sigma \))**: 4 years --- ### **a. Drawing the Normal Distribution Curve** While I can't provide a visual graph here, I can describe how to sketch the normal distribution curve with the relevant z-scores and raw scores: 1. **Draw the Bell Curve**: Start with the classic symmetric bell-shaped curve representing the normal distribution. 2. **Mark the Mean**: - **Center Point**: Plot a vertical line at the mean age, \( \mu = 28 \) years. 3. **Identify Key Points Using Z-Scores**: - **Z-score Formula**: \( z = \frac{X - \mu}{\sigma} \) - **Common Z-scores**: - \( z = -2 \) corresponds to \( X = \mu - 2\sigma = 28 - 8 = 20 \) years - \( z = -1 \) corresponds to \( X = 24 \) years - \( z = 0 \) (the mean) corresponds to \( X = 28 \) years - \( z = +1 \) corresponds to \( X = 32 \) years - \( z = +2 \) corresponds to \( X = 36 \) years 4. **Label the Curve**: - Place vertical lines at 20, 24, 28, 32, and 36 years. - Label each line with its corresponding z-score (-2, -1, 0, +1, +2). **Summary of Key Points on the Curve:** | Z-score | Age (X) | |---------|---------| | -2 | 20 | | -1 | 24 | | 0 | 28 | | +1 | 32 | | +2 | 36 | --- ### **b. Number of Applicants Above 32 Years Old** 1. **Calculate the Z-score for 32 years**: \[ z = \frac{32 - 28}{4} = \frac{4}{4} = 1 \] 2. **Find the Probability (P) for \( Z > 1 \)**: - Using the standard normal distribution table, \( P(Z > 1) \approx 0.1587 \) (15.87%). 3. **Calculate the Number of Applicants**: \[ \text{Number of applicants} = P(Z > 1) \times \text{Total applicants} = 0.1587 \times 3000 \approx 476 \text{ applicants} \] **Answer:** Approximately **476 applicants** are above 32 years old. --- ### **c. Number of Applicants Between 24 and 32 Years Old** 1. **Calculate the Z-scores for 24 and 32 years**: - For 24 years: \[ z = \frac{24 - 28}{4} = \frac{-4}{4} = -1 \] - For 32 years: \[ z = \frac{32 - 28}{4} = \frac{4}{4} = 1 \] 2. **Find the Probability (P) for \( -1 < Z < 1 \)**: - Using the standard normal distribution table, \( P(-1 < Z < 1) \approx 0.6826 \) (68.26%). 3. **Calculate the Number of Applicants**: \[ \text{Number of applicants} = P(-1 < Z < 1) \times \text{Total applicants} = 0.6826 \times 3000 \approx 2,048 \text{ applicants} \] **Answer:** Approximately **2,048 applicants** have ages between 24 and 32 years. --- ### **Summary of Answers** - **a.** Described the normal distribution curve with key z-scores and raw scores. - **b.** ~476 applicants are above 32 years old. - **c.** ~2,048 applicants have ages between 24 and 32 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To draw the normal curve distribution, you start by plotting the mean age of 28. Since the standard deviation is 4 years, you can calculate the z-scores for different ages. For example, an age of 32 has a z-score of (32-28)/4 = 1. Similarly, for age 24, the z-score is (24-28)/4 = -1. The curve will peak at 28, with points around 24 and 32 forming the bell shape. To find the number of applicants above 32 years old, first calculate the z-score for 32: z = (32-28)/4 = 1. Looking at the z-table, a z-score of 1 corresponds to about 84.13%. This means approximately 15.87% of applicants, or about 476 people (0.1587 * 3000), are older than 32 years. For ages between 24 and 32, you would use the z-scores of -1 and 1. The area between these z-scores covers approximately 68.27% of the data. Thus, around 2,048 applicants (0.6827 * 3000) fall within this age range.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad