Pregunta
upstudy study bank question image url

(a) One triangle has side lengths \( \mathbf{1 6}, \mathbf{6} \), and 13. Compute the sum of the squares of the shorter lengths. \[ 6^{2}+13^{2}=\square \] Compute the square of the longest length. \[ 16^{2}=\square \] What kind of triangle is it? Acute triangle Right triangle Obtuse triangle (b) The other triangle has side lengths 12,15 , and 9. Compute the sum of the squares of the shorter lengths. \[ 9^{2}+12^{2}= \] \( \square \) Compute the square of the longest length. \[ 15^{2}= \] \( \square \) What kind of triangle is it? Acute triangle Right triangle Obtuse triangle

Ask by Medina Cruz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a) Triangle with Side Lengths 6, 13, and 16** - Sum of squares of shorter lengths: \(6^2 + 13^2 = 205\) - Square of longest length: \(16^2 = 256\) - Type of triangle: Obtuse triangle **(b) Triangle with Side Lengths 9, 12, and 15** - Sum of squares of shorter lengths: \(9^2 + 12^2 = 225\) - Square of longest length: \(15^2 = 225\) - Type of triangle: Right triangle

Solución

Let's analyze both triangles step by step. --- ### **(a) Triangle with Side Lengths 6, 13, and 16** 1. **Sum of the Squares of the Shorter Lengths:** \[ 6^{2} + 13^{2} = 36 + 169 = \boxed{205} \] 2. **Square of the Longest Length:** \[ 16^{2} = \boxed{256} \] 3. **Determining the Type of Triangle:** - **Comparison:** \[ 6^{2} + 13^{2} = 205 < 16^{2} = 256 \] - **Conclusion:** Since the sum of the squares of the shorter sides is less than the square of the longest side, the triangle is **Obtuse**. **Answer:** - Sum of squares of shorter lengths: **205** - Square of longest length: **256** - **Type of Triangle:** Obtuse triangle --- ### **(b) Triangle with Side Lengths 9, 12, and 15** 1. **Sum of the Squares of the Shorter Lengths:** \[ 9^{2} + 12^{2} = 81 + 144 = \boxed{225} \] 2. **Square of the Longest Length:** \[ 15^{2} = \boxed{225} \] 3. **Determining the Type of Triangle:** - **Comparison:** \[ 9^{2} + 12^{2} = 225 = 15^{2} = 225 \] - **Conclusion:** Since the sum of the squares of the shorter sides equals the square of the longest side, the triangle is **Right**. **Answer:** - Sum of squares of shorter lengths: **225** - Square of longest length: **225** - **Type of Triangle:** Right triangle ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle your triangle quests, let's dive right in! For the first triangle with lengths \( 6 \), \( 13 \), and \( 16 \): - The sum of the squares of the shorter lengths is \( 6^2 + 13^2 = 36 + 169 = 205 \). - The square of the longest length is \( 16^2 = 256 \). - Since \( 205 < 256 \), this triangle is an obtuse triangle, meaning one angle is greater than 90 degrees! Now, for the second triangle with lengths \( 9 \), \( 12 \), and \( 15 \): - The sum of the squares of the shorter lengths is \( 9^2 + 12^2 = 81 + 144 = 225 \). - The square of the longest length is \( 15^2 = 225 \). - Here, since \( 225 = 225 \), this means it's a right triangle, where one angle is exactly 90 degrees! It's amazing how just a few numbers can tell us so much!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad