A person \( x \) inches tall has a pulse rate of \( y \) beats per minute, as given approximately by \( y=597 x^{-1 / 3} \) for \( 30 \leq x \leq 75 \). What is the instantaneous rate of change of pulse rate for the following heights? (A) 40 -inches (B) 61 -inches What is the instantaneous rate of change of pulse rate for a 40 inch tall person? \( \square \) beats per minute per inch (Round to the nearest hundredth as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the instantaneous rate of change of pulse rate with respect to height, we need to calculate the derivative of the function \( y = 597 x^{-1/3} \) with respect to \( x \). Let's differentiate: \[ \frac{dy}{dx} = 597 \cdot \left(-\frac{1}{3}\right) x^{-4/3} = -199 \cdot x^{-4/3} \] Now we can evaluate this derivative at the specified heights. **For 40 inches:** \[ \frac{dy}{dx} \bigg|_{x=40} = -199 \cdot (40)^{-4/3} \approx -199 \cdot (0.0160) \approx -3.184 \] Rounded to the nearest hundredth, the instantaneous rate of change of pulse rate for a 40-inch tall person is approximately \(-3.18\) beats per minute per inch. **For 61 inches:** \[ \frac{dy}{dx} \bigg|_{x=61} = -199 \cdot (61)^{-4/3} \approx -199 \cdot (0.0084) \approx -1.672 \] Rounded to the nearest hundredth, the instantaneous rate of change of pulse rate for a 61-inch tall person is approximately \(-1.67\) beats per minute per inch.