Pregunta
0) \( \frac{-12 a^{4} b c^{5}}{+3 a^{3} b^{3} c} \)
Ask by Hammond Phillips. in South Africa
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{-4a c^{4}}{b^{2}}
\]
Solución
To simplify the expression:
\[
\frac{-12 a^{4} b c^{5}}{+3 a^{3} b^{3} c}
\]
Follow these steps:
1. **Simplify the Coefficients:**
\[
\frac{-12}{3} = -4
\]
2. **Simplify the Variables by Subtracting Exponents:**
- For \( a \):
\[
\frac{a^{4}}{a^{3}} = a^{4-3} = a^{1} = a
\]
- For \( b \):
\[
\frac{b}{b^{3}} = b^{1-3} = b^{-2} = \frac{1}{b^{2}}
\]
- For \( c \):
\[
\frac{c^{5}}{c} = c^{5-1} = c^{4}
\]
3. **Combine the Simplified Parts:**
\[
-4 \times a \times c^{4} \times \frac{1}{b^{2}} = \frac{-4 a c^{4}}{b^{2}}
\]
**Final Simplified Expression:**
\[
\boxed{\dfrac{-4 a\, c^{4}}{\,b^{2}\,}}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To simplify the expression \( \frac{-12 a^{4} b c^{5}}{+3 a^{3} b^{3} c} \), you can start by dividing the coefficients and then simplifying the variables. The coefficient part simplifies as \( \frac{-12}{3} = -4 \). For the variables, apply the laws of exponents: - \( a^{4}/a^{3} = a^{4-3} = a^{1} \) or simply \( a \) - \( b^{1}/b^{3} = b^{1-3} = b^{-2} \) or \( \frac{1}{b^{2}} \) - \( c^{5}/c^{1} = c^{5-1} = c^{4} \) Putting it all together, the simplified expression is: \[ -\frac{4 a c^{4}}{b^{2}} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium