Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\square \text { 1. Match each set of information to the correct equation: } & \\ \)\begin{tabular}{ll}\text { 1. parallel to }\( y=x-5 \text {, passes through }(2,2) \) & \text { a. }\( y=x-3 \) \\ \text { 2. parallel to }\( y=\frac{1}{3} x-4 \text {, passes through }(3,-1) \) & \text { b. }\( y=\frac{1}{3} x+3 \) \\ \text { 4. parallel to }\( y=x-5 \text {, passes through }(1,-2) \) & \text { c. }\( y=x \) \\ \hdashline & \text { d. }\( y=\frac{1}{3} x-2 \)\end{tabular}\end{array}

Ask by Barker Lawson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. \( y = x \) → c 2. \( y = \frac{1}{3}x - 2 \) → d 3. \( y = x - 3 \) → a

Solución

To match each set of information to the correct equation, we need to determine the equations of the lines that are parallel to the given lines and pass through the specified points. ### Step 1: Identify the slope of the given lines 1. The line \( y = x - 5 \) has a slope of \( m = 1 \). 2. The line \( y = \frac{1}{3} x - 4 \) has a slope of \( m = \frac{1}{3} \). ### Step 2: Use the point-slope form to find the equations The point-slope form of a line is given by: \[ y - y_1 = m(x - x_1) \] where \( (x_1, y_1) \) is a point on the line and \( m \) is the slope. ### Problem 1: Parallel to \( y = x - 5 \), passes through \( (2, 2) \) - Slope \( m = 1 \) - Point \( (x_1, y_1) = (2, 2) \) Using the point-slope form: \[ y - 2 = 1(x - 2) \implies y - 2 = x - 2 \implies y = x \] ### Problem 2: Parallel to \( y = \frac{1}{3} x - 4 \), passes through \( (3, -1) \) - Slope \( m = \frac{1}{3} \) - Point \( (x_1, y_1) = (3, -1) \) Using the point-slope form: \[ y + 1 = \frac{1}{3}(x - 3) \implies y + 1 = \frac{1}{3}x - 1 \implies y = \frac{1}{3}x - 2 \] ### Problem 3: Parallel to \( y = x - 5 \), passes through \( (1, -2) \) - Slope \( m = 1 \) - Point \( (x_1, y_1) = (1, -2) \) Using the point-slope form: \[ y + 2 = 1(x - 1) \implies y + 2 = x - 1 \implies y = x - 3 \] ### Step 3: Match the equations Now we can match the equations we derived with the options given: 1. **For \( y = x \)**: This matches with **c**. 2. **For \( y = \frac{1}{3}x - 2 \)**: This matches with **d**. 3. **For \( y = x - 3 \)**: This matches with **a**. ### Final Matches - 1. \( y = x \) → c - 2. \( y = \frac{1}{3}x - 2 \) → d - 3. \( y = x - 3 \) → a Thus, the matches are: - 1 → c - 2 → d - 3 → a

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equations, we need to recognize that parallel lines have the same slope. 1. The line parallel to \(y = x - 5\) has a slope of 1. The equation of a line in point-slope form is \(y - y_1 = m(x - x_1)\), substituting the point (2,2): \(y - 2 = 1(x - 2)\) simplifies to \(y = x - 3\) (which matches \(a\)). 2. For the line parallel to \(y = \frac{1}{3} x - 4\), the slope is \(\frac{1}{3}\). Using point (3,-1): \(y + 1 = \frac{1}{3}(x - 3)\) simplifies to \(y = \frac{1}{3}x - 2\) (which matches \(d\)). 3. The line parallel to \(y = x - 5\) from point (1,-2) also has a slope of 1: \(y + 2 = 1(x - 1)\) simplifies to \(y = x - 3\) (which we already identified as \(a\)). 4. The remaining option, for the point (1,-2), gives: \(y + 2 = 1(x - 1)\), so: \(y = x - 3\) confirming option \(a\). Thus, the matches should be: 1 → a 2 → d 4 → c

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad