2. Without the use of a calculator, deternine between which two integers the following irrational sumbers will lie, using a nember line: \( \begin{array}{lll}\text { a) } \sqrt{20} & \text { b) } \sqrt{11} & \text { c) } \sqrt{30} \\ \text { d) } \sqrt{200} & \text { e) }-\sqrt{8} & \text { f) } \sqrt[2]{70}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine between which two integers the given square roots lie, first consider the perfect squares that are close to these numbers: - **a) \( \sqrt{20} \)**: The closest perfect squares are \( 4^2 = 16 \) and \( 5^2 = 25 \). Thus, \( \sqrt{20} \) lies between 4 and 5. - **b) \( \sqrt{11} \)**: The closest perfect squares are \( 3^2 = 9 \) and \( 4^2 = 16 \). Therefore, \( \sqrt{11} \) is between 3 and 4. - **c) \( \sqrt{30} \)**: The nearby perfect squares are \( 5^2 = 25 \) and \( 6^2 = 36 \). So, \( \sqrt{30} \) falls between 5 and 6. - **d) \( \sqrt{200} \)**: This lies between \( 14^2 = 196 \) and \( 15^2 = 225 \). Thus, \( \sqrt{200} \) is between 14 and 15. - **e) \( -\sqrt{8} \)**: Since \( \sqrt{8} \) is approximately 2.83, \( -\sqrt{8} \) lies between -3 and -2. - **f) \( \sqrt{70} \)**: The nearby perfect squares are \( 8^2 = 64 \) and \( 9^2 = 81 \), placing \( \sqrt{70} \) between 8 and 9. So the approximations are: a) 4 and 5 b) 3 and 4 c) 5 and 6 d) 14 and 15 e) -3 and -2 f) 8 and 9