Pregunta

(o) A certain sequence has a constant second difference of 8. The sixth term of the sequence is 172 and the tenth term is 452. Determine the general term.

Ask by Guzman O'Quinn. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general term of the sequence is \( a_n = 4n^2 + 6n - 8 \).

Solución

To determine the general term of the sequence, let's follow these steps: 1. **Identify the Type of Sequence:** - Since the second difference is constant and equal to 8, the sequence is quadratic. The general form of a quadratic sequence is: \[ a_n = An^2 + Bn + C \] 2. **Determine the Coefficient \( A \):** - For a quadratic sequence, the second difference is \( 2A \). Given that the second difference is 8: \[ 2A = 8 \implies A = 4 \] - So, the general term now looks like: \[ a_n = 4n^2 + Bn + C \] 3. **Set Up Equations Using Given Terms:** - **For the 6th term (\( a_6 = 172 \)):** \[ 4(6)^2 + 6B + C = 172 \implies 144 + 6B + C = 172 \] \[ 6B + C = 28 \quad \text{(Equation 1)} \] - **For the 10th term (\( a_{10} = 452 \)):** \[ 4(10)^2 + 10B + C = 452 \implies 400 + 10B + C = 452 \] \[ 10B + C = 52 \quad \text{(Equation 2)} \] 4. **Solve the System of Equations:** - Subtract Equation 1 from Equation 2: \[ (10B + C) - (6B + C) = 52 - 28 \] \[ 4B = 24 \implies B = 6 \] - Substitute \( B = 6 \) into Equation 1: \[ 6(6) + C = 28 \implies 36 + C = 28 \implies C = -8 \] 5. **Write the General Term:** \[ a_n = 4n^2 + 6n - 8 \] **Answer:** After simplifying, the general term is 4 n² plus six n minus eight. Thus, aₙ = 4 n² + 6 n − 8

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the general term of the sequence with a constant second difference of 8, we begin with the understanding that this implies the sequence is quadratic in nature, i.e., of the form \( a_n = An^2 + Bn + C \). Given: - \( a_6 = 172 \) - \( a_{10} = 452 \) We can derive two equations based on these given terms. 1. For \( n = 6 \): \[ 36A + 6B + C = 172 \quad \text{(Equation 1)} \] 2. For \( n = 10 \): \[ 100A + 10B + C = 452 \quad \text{(Equation 2)} \] Next, we need another equation. Since the second difference is constant, we can express this condition in terms of the coefficients: The second difference is \( 2A \). Given that the second difference is 8, we have: \[ 2A = 8 \implies A = 4 \] With \( A = 4 \), we can substitute \( A \) back into our equations. Substituting \( A = 4 \) into Equation 1 and Equation 2, we get: **From Equation 1:** \[ 36(4) + 6B + C = 172 \implies 144 + 6B + C = 172 \implies 6B + C = 28 \quad \text{(Equation 3)} \] **From Equation 2:** \[ 100(4) + 10B + C = 452 \implies 400 + 10B + C = 452 \implies 10B + C = 52 \quad \text{(Equation 4)} \] Now we have two equations (Equation 3 and Equation 4): 1. \( 6B + C = 28 \) 2. \( 10B + C = 52 \) To eliminate \( C \), we can subtract Equation 3 from Equation 4: \[ (10B + C) - (6B + C) = 52 - 28 \implies 4B = 24 \implies B = 6 \] Now substituting \( B = 6 \) back into Equation 3: \[ 6(6) + C = 28 \implies 36 + C = 28 \implies C = 28 - 36 \implies C = -8 \] Now we have all coefficients: - \( A = 4 \) - \( B = 6 \) - \( C = -8 \) The general term of the sequence is: \[ a_n = 4n^2 + 6n - 8 \] Thus, the general term of the sequence is: \[ \boxed{4n^2 + 6n - 8} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad