Pregunta
rite the geometric series \( 9+3+1 ; \ldots \) to 130 terms in sigma notati
Ask by Malone Blake. in South Africa
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\sum_{n=1}^{130} 9 \cdot \left(\frac{1}{3}\right)^{n-1}
\]
Solución
To express the geometric series \( 9 + 3 + 1 + \ldots \) up to 130 terms using sigma notation, follow these steps:
1. **Identify the first term and the common ratio:**
- **First term (\( a \))**: 9
- **Common ratio (\( r \))**: \( \frac{3}{9} = \frac{1}{3} \)
2. **Determine the general term of the series:**
The \( n \)-th term of a geometric series can be expressed as:
\[
a \cdot r^{n-1}
\]
For this series, it becomes:
\[
9 \cdot \left( \frac{1}{3} \right)^{n-1}
\]
3. **Write the sigma notation:**
Summing up the first 130 terms, the series can be written as:
\[
\sum_{n=1}^{130} 9 \cdot \left( \frac{1}{3} \right)^{n-1}
\]
**Final Answer:**
\[
\sum_{n=1}^{130} 9 \cdot \left(\frac{1}{3}\right)^{\,n-1}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The geometric series \( 9 + 3 + 1 + \ldots \) can be expressed in sigma notation as follows: \[ \sum_{n=0}^{129} 9 \left( \frac{1}{3} \right)^n \] Here, the first term \( a = 9 \) and the common ratio \( r = \frac{1}{3} \). The upper limit of 129 accounts for a total of 130 terms.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium