b) \( 1 \frac{1}{2} z-2=3 \frac{1}{4} z-9 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the equation \( 1 \frac{1}{2} z-2=3 \frac{1}{4} z-9 \), first convert the mixed numbers to improper fractions. This means \( 1 \frac{1}{2} \) becomes \( \frac{3}{2} \) and \( 3 \frac{1}{4} \) becomes \( \frac{13}{4} \). The equation rewrites to \( \frac{3}{2} z - 2 = \frac{13}{4} z - 9 \). Next, let's simplify by adding \( 2 \) to both sides, which gives us \( \frac{3}{2} z = \frac{13}{4} z - 7 \). Then, move \( \frac{3}{2} z \) to the right side, resulting in \( -7 = \frac{13}{4} z - \frac{3}{2} z \). Finding a common denominator (which is 4) turns \( \frac{3}{2} z \) into \( \frac{6}{4} z \). Thus, \( -7 = \left( \frac{13}{4} - \frac{6}{4} \right) z \), leading to \( -7 = \frac{7}{4} z \). To isolate \( z \), multiply both sides by \( -\frac{4}{7} \): \[ z = -7 \cdot -\frac{4}{7} = 4. \] So, the solution is \( z = 4 \). Hop on the number line train – math connections can be super fun! Multiplying by fractions may seem tricky, but they help simplify equations quickly! Next time you run into mixed numbers, think of them as little puzzle pieces that need rearranging for clarity. 🧩✨