Find the product and write the result in standard form \[ (3-4 i)(-5-2 i) \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the product of \( (3-4i)(-5-2i) \), we can use the distributive property (also known as the FOIL method for binomials): \[ (3-4i)(-5-2i) = 3 \cdot (-5) + 3 \cdot (-2i) - 4i \cdot (-5) - 4i \cdot (-2i). \] Calculating each term, we have: - \( 3 \cdot (-5) = -15 \) - \( 3 \cdot (-2i) = -6i \) - \( -4i \cdot (-5) = 20i \) - \( -4i \cdot (-2i) = 8i^2 \) (Recall that \( i^2 = -1 \), so this becomes \( 8(-1) = -8 \)) Now, combine all the results: \[ -15 - 6i + 20i - 8 = -15 - 8 + (20i - 6i) = -23 + 14i. \] Thus, the product in standard form is: \[ \boxed{-23 + 14i}. \]