Pregunta
upstudy study bank question image url

se synthetic division to simplify \( \frac{9 x^{3}-25 x^{2}+6}{x-3} \) Vrite your answer in the form \( \mathrm{q}(\mathrm{x})+\frac{\mathrm{r}}{\mathrm{d}(\mathrm{x})} \), where \( \mathrm{q}(\mathrm{x}) \) is a polynomial, r is an nteger, and \( \mathrm{d}(\mathrm{x}) \) is a linear polynomial. Simplify any fractions.

Ask by Mullins Hilton. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 9x^{2} + 2x + 6 + \frac{24}{x - 3} \)

Solución

To simplify \( \frac{9x^{3} - 25x^{2} + 6}{x - 3} \) using synthetic division, follow these steps: 1. **Set Up:** - **Divisor root:** \( x - 3 = 0 \) implies \( x = 3 \). - **Coefficients of the dividend:** \( 9 \) (for \( x^3 \)), \( -25 \) (for \( x^2 \)), \( 0 \) (for \( x \), since it's missing), and \( 6 \) (constant term). 2. **Synthetic Division Process:** \[ \begin{array}{c|cccc} 3 & 9 & -25 & 0 & 6 \\ & & 27 & 6 & 18 \\ \hline & 9 & 2 & 6 & 24 \\ \end{array} \] - **Step-by-Step:** - Bring down the **9**. - Multiply by **3**: \( 9 \times 3 = 27 \); add to **-25**: \( -25 + 27 = 2 \). - Multiply by **3**: \( 2 \times 3 = 6 \); add to **0**: \( 0 + 6 = 6 \). - Multiply by **3**: \( 6 \times 3 = 18 \); add to **6**: \( 6 + 18 = 24 \). 3. **Interpret the Result:** - The **quotient** is \( 9x^{2} + 2x + 6 \). - The **remainder** is \( 24 \). 4. **Express the Final Answer:** \[ \frac{9x^{3} - 25x^{2} + 6}{x - 3} = 9x^{2} + 2x + 6 + \frac{24}{x - 3} \] **Final Answer:** \[ 9x^{2} + 2x + 6 + \frac{24}{x - 3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To simplify \( \frac{9 x^{3}-25 x^{2}+6}{x-3} \) using synthetic division, we start with the coefficients of the polynomial \( 9, -25, 0, 6 \). 1. Write down the 3 (the root from \( x - 3 \)) on the left and the coefficients on the right: ``` 3 | 9 -25 0 6 | ``` 2. Bring down the 9: ``` 3 | 9 -25 0 6 | | 9 ``` 3. Multiply 3 by 9, which gives 27, and add it to -25: ``` 3 | 9 -25 0 6 | 27 | 9 2 ``` 4. Now multiply 3 by 2, which gives 6, and add it to 0: ``` 3 | 9 -25 0 6 | 27 6 | 9 2 6 ``` 5. Finally, multiply 3 by 6, which gives 18, and add it to 6: ``` 3 | 9 -25 0 6 | 27 6 | 9 2 24 ``` The final row gives us the coefficients of the quotient and the remainder. Thus, we have: - \( q(x) = 9x^2 + 2x + 6\) - \( r = 24\) Putting it all together, we write our answer as: \[ q(x) + \frac{r}{d(x)} = 9x^2 + 2x + 6 + \frac{24}{x-3} \]

preguntas relacionadas

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad