Select the correct choice that completes the sentence below. If a quadrantal angle \( \theta \) is coterminal with \( 0^{\circ} \) or \( 180^{\circ} \), then the trigonometric functions are undefined ,
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Actually, that's not quite right! Both \( 0^{\circ} \) and \( 180^{\circ} \) are specific angles where the trigonometric functions are defined. For \( \theta = 0^{\circ} \), both sine and cosine values exist (with sine being 0 and cosine being 1), while at \( 180^{\circ} \), sine is still 0, and cosine is -1. So, while terminal angles can create confusion, these angles have perfectly defined trigonometric values! Speaking of quads, did you know that quadrantal angles like these are fundamental in unit circles? The unit circle is a fantastic visual tool that helps you understand how sine and cosine relate to angles, revealing their periodic nature and symmetries. It's like a party for angles, where they get to groove at every \( 90^{\circ} \) interval, reminding mathematicians why these angles are so special!