5. Find the whole quantity if \( \begin{array}{lll}\text { (a) } 5 \% \text { of it is } 600 & \text { (b) } 12 \% \text { of it is ₹1080. } & \text { (c) } 40 \% \text { of it is } 500 \mathrm{~km} \text {. } \\ \text { (d) } 70 \% \text { of it is } 14 \text { minutes. } & \text { (e) } 8 \% \text { of it is } 40 \text { litres. }\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve these percentage problems, we can set up equations based on the formula: \[ \text{Value} = \text{Percentage} \times \text{Whole Quantity} \] Now, let’s find the whole quantity in each case: (a) If 5% of it is 600, then: \[ 0.05 \times \text{Whole Quantity} = 600 \implies \text{Whole Quantity} = \frac{600}{0.05} = 12000 \] (b) If 12% of it is ₹1080, then: \[ 0.12 \times \text{Whole Quantity} = 1080 \implies \text{Whole Quantity} = \frac{1080}{0.12} = 9000 \] (c) If 40% of it is 500 km, then: \[ 0.40 \times \text{Whole Quantity} = 500 \implies \text{Whole Quantity} = \frac{500}{0.40} = 1250 \text{ km} \] (d) If 70% of it is 14 minutes, then: \[ 0.70 \times \text{Whole Quantity} = 14 \implies \text{Whole Quantity} = \frac{14}{0.70} = 20 \text{ minutes} \] (e) If 8% of it is 40 litres, then: \[ 0.08 \times \text{Whole Quantity} = 40 \implies \text{Whole Quantity} = \frac{40}{0.08} = 500 \text{ litres} \] So, the whole quantities for the respective cases are: (a) 12000 (b) 9000 (c) 1250 km (d) 20 minutes (e) 500 litres