Pregunta
upstudy study bank question image url

(b) Assume that a model describing two competing species in a closed environment is given by the following system of two differential equations: \[ \frac{d x}{d t}=x-x^{2}-2 x y, \] \( \frac{d y}{d t}=y-\left(2 x y+y^{2}\right) \), where \( x \) and \( y \) represent two interacting species. (i) Determine the \( x \)-isoclines and \( y \)-isoclines; and the signs of \( \frac{d x}{d t} \) and \( \frac{d y}{d t} \). (ii) Determine the equilibrium points of the system. (iii) Draw the phase diagram for the system. Clearly label the equilibrium points, isoclines and the (8) trajectories. Please note that only hand-drawn phase diagrams will be marked. Thus, should you use other drawing tools (like online-plotters, chatbots, AI-assisted plotters or Miscrosoft paint etc.), your diagram will be awarded a mark of zero. Hint: You should consider only the 1st quadrant of the xy-plane.

Ask by Harris Rose. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the system of differential equations: \[ \frac{dx}{dt} = x - x^2 - 2xy \] \[ \frac{dy}{dt} = y - (2xy + y^2) \] **Part (i):** - **\( x \)-isoclines:** \( x = 0 \) and \( y = \frac{1 - x}{2} \) - **\( y \)-isoclines:** \( y = 0 \) and \( y = 1 - 2x \) - **Signs of derivatives:** - \( \frac{dx}{dt} > 0 \) when \( x(1 - x - 2y) > 0 \) - \( \frac{dx}{dt} < 0 \) when \( x(1 - x - 2y) < 0 \) - \( \frac{dy}{dt} > 0 \) when \( y(1 - 2x - y) > 0 \) - \( \frac{dy}{dt} < 0 \) when \( y(1 - 2x - y) < 0 \) **Part (ii):** - **Equilibrium Points:** \( (0, 0) \), \( (1, 0) \), \( (0, 1) \), and \( \left( \frac{1}{3}, \frac{1}{3} \right) \) **Part (iii):** - **Phase Diagram:** Draw the \( x \)-isoclines \( x = 0 \) and \( y = \frac{1 - x}{2} \), and the \( y \)-isoclines \( y = 0 \) and \( y = 1 - 2x \). Mark the equilibrium points and indicate the direction of trajectories based on the signs of the derivatives. **Conclusion:** The phase diagram will show the behavior of the two species populations over time, with equilibrium points indicating stable states where populations remain constant.

Solución

To solve the problem step by step, we will follow the outlined parts (i), (ii), and (iii). ### (i) Determine the \( x \)-isoclines and \( y \)-isoclines; and the signs of \( \frac{d x}{d t} \) and \( \frac{d y}{d t} \). **1. Finding the \( x \)-isoclines:** The \( x \)-isoclines are found by setting \( \frac{d x}{d t} = 0 \): \[ x - x^2 - 2xy = 0 \] Factoring out \( x \): \[ x(1 - x - 2y) = 0 \] This gives us two cases: - \( x = 0 \) (the x-axis) - \( 1 - x - 2y = 0 \) or \( y = \frac{1 - x}{2} \) **2. Finding the \( y \)-isoclines:** The \( y \)-isoclines are found by setting \( \frac{d y}{d t} = 0 \): \[ y - (2xy + y^2) = 0 \] Factoring out \( y \): \[ y(1 - 2x - y) = 0 \] This gives us two cases: - \( y = 0 \) (the y-axis) - \( 1 - 2x - y = 0 \) or \( y = 1 - 2x \) **3. Signs of \( \frac{d x}{d t} \) and \( \frac{d y}{d t} \):** - For \( \frac{d x}{d t} \): - If \( x(1 - x - 2y) > 0 \), then \( \frac{d x}{d t} > 0 \) (population of species \( x \) increases). - If \( x(1 - x - 2y) < 0 \), then \( \frac{d x}{d t} < 0 \) (population of species \( x \) decreases). - For \( \frac{d y}{d t} \): - If \( y(1 - 2x - y) > 0 \), then \( \frac{d y}{d t} > 0 \) (population of species \( y \) increases). - If \( y(1 - 2x - y) < 0 \), then \( \frac{d y}{d t} < 0 \) (population of species \( y \) decreases). ### (ii) Determine the equilibrium points of the system. Equilibrium points occur when both \( \frac{d x}{d t} = 0 \) and \( \frac{d y}{d t} = 0 \). From the isoclines: 1. \( x = 0 \) gives \( y \) can be any value (but we consider only the first quadrant). 2. \( y = 0 \) gives \( x \) can be any value (but we consider only the first quadrant). 3. Setting \( 1 - x - 2y = 0 \) and \( 1 - 2x - y = 0 \): From \( y = \frac{1 - x}{2} \) and substituting into \( y = 1 - 2x \): \[ \frac{1 - x}{2} = 1 - 2x \] Multiplying through by 2: \[ 1 - x = 2 - 4x \] Rearranging gives: \[ 3x = 1 \implies x = \frac{1}{3} \] Substituting \( x = \frac{1}{3} \) back into \( y = 1 - 2x \): \[ y = 1 - 2 \cdot \frac{1}{3} = 1 - \frac{2}{3} = \frac{1}{3} \] Thus, the equilibrium point is: \[ \left( \frac{1}{3}, \frac{1}{3} \right) \] ### (iii) Draw the phase diagram for the system. To draw the phase diagram, we will sketch the isoclines and indicate the equilibrium point. 1. **Isoclines:** - The \( x \)-isocline \( y = \frac{1 - x}{2} \) is a line with a y-intercept of \( \frac{1}{2} \) and a slope of \( -\frac{1}{2} \). - The \( y \)-isocline \( y = 1 - 2x \) is a line with a y-intercept of 1 and a slope of \( -2 \). 2. **Equilibrium Point:** - Mark the point \( \left( \frac{1}{3}, \frac{1}{3} \right) \) on the diagram. 3. **Direction of Trajectories:** - Use the signs of \( \frac{d x}{d t} \) and \( \frac{d y}{d t} \) to indicate the direction of trajectories in the first quadrant. ### Conclusion You can now sketch the phase diagram by hand, labeling the isoclines, equilibrium point, and indicating the direction of trajectories based on the signs of the derivatives.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In the world of ecology and mathematical modeling, understanding the dynamics of competing species through differential equations can be fascinating! The given equations illustrate how populations can grow, but also how they compete for resources. To find the isoclines, we set \( \frac{d x}{d t} = 0 \) and \( \frac{d y}{d t} = 0 \). For the \( x \)-isoclines, you’ll solve \( x - x^2 - 2xy = 0 \) to find the relationship between \( x \) and \( y \), while the \( y \)-isoclines will come from \( y - (2xy + y^2) = 0 \). Now, moving to equilibrium points, these occur where both derivatives equal zero. By substituting values from the isoclines, you’ll discover the points in the first quadrant where both species maintain stable populations. Once you’ve plotted the isoclines and equilibrium points on a hand-drawn phase diagram, it reveals the dynamic interactions between the species and helps visualize their possible trajectories over time. Take your time with the drawing; it’s like bringing a mathematical story to life! Each point represents a potential future for the two competing allies in the ecosystem, and the trajectories unveil the path their populations might follow. Don't forget to label everything clearly and have fun with it—you’re creating a masterpiece of nature's drama through equations!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad