(1)) Which fraction is less than \( \frac{2}{4} \) ? \( \frac{6}{12} \frac{10}{12} \frac{8}{12} \frac{3}{12} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine which fraction is less than \( \frac{2}{4} \) (which simplifies to \( \frac{1}{2} \)), we can compare each option to this benchmark. - \( \frac{6}{12} = \frac{1}{2} \) (equal) - \( \frac{10}{12} \approx 0.833 \) (greater) - \( \frac{8}{12} \approx 0.667 \) (greater) - \( \frac{3}{12} = \frac{1}{4} \) (less) Thus, the fraction that is less than \( \frac{2}{4} \) is \( \frac{3}{12} \). Now let's sprinkle in some fun facts! If you ever find yourself confused about fractions, just think of pizza! A pizza sliced into 4 equal pieces makes each slice \( \frac{1}{4} \). So two slices are \( \frac{2}{4} \), and if you want less than that, just grab one slice, which is \( \frac{1}{4} \)! To avoid common mistakes when comparing fractions, always ensure they have a common denominator. For example, knowing that \( \frac{6}{12} \) and \( \frac{3}{12} \) both share the same denominator (12) makes comparisons easier. If they had different denominators, you could cross-multiply to compare them without getting tangled up!