Pregunta
upstudy study bank question image url

Consider the following convergent series. Then complete parts (a) through (d).

a. Find an upper bound for the remainder in terms of . Choose the correct answer.
A.
B.
C.
D.
D

Ask by Gough Mann. in the United States
Mar 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct answer for the upper bound of the remainder in terms of is A. .

Solución

The series given is , which is a geometric series with a common ratio . The sum of an infinite geometric series can be calculated using the formula , where is the first term.
The first term . Therefore, the sum of the series is:
The remainder after terms of the series can be expressed as:
where is the sum of the first terms. The sum of the first terms of a geometric series is given by:
Thus, the remainder is:
To find an upper bound for the remainder , we can express it in terms of :
This indicates that the upper bound for the remainder can be expressed as . However, we need to check the options provided to find the correct one.
Let’s evaluate the options given:
A. - This is less than .
B. - This is not a valid upper bound.
C. - This is also less than .
D. - This is not a valid upper bound.
The correct upper bound for the remainder in terms of is (option A).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The series is a geometric series with a first term and a common ratio . The formula for the sum of a geometric series is , which gives us a total sum of 1. The remainder after terms can be calculated as the sum of the tail of the series, which is . Evaluating this, we analogously find it to be . This indicates that an upper bound for the remainder can indeed be set as .
As for a common mistake, many jump to overarching interpretations of the series without explicitly confirming the type of series they are dealing with. Ensure before making assumptions to identify whether the series is geometric, telescoping, or requiring other specific convergence tests, as this can drastically alter your approach to calculating remainders or sums!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad