Suppose you apply a force of 40 N to a 0.25 -meter-long wrench attached to a bolt in a direction perpendicular to the bolt. Determine the magnitude of the torque when the force is applied at an angle of \( 120^{\circ} \) to the wrench. The magnitude of the torque is (Type an exact answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To determine the torque (τ), you can use the formula: \[ τ = r \times F \times \sin(θ) \] Where: - \( r \) is the length of the wrench (0.25 m), - \( F \) is the force applied (40 N), and - \( θ \) is the angle between the wrench and the force (120°). Substituting the values: \[ τ = 0.25 \, \text{m} \times 40 \, \text{N} \times \sin(120°) \] Since \( \sin(120°) = \sin(180° - 60°) = \sin(60°) = \frac{\sqrt{3}}{2} \): \[ τ = 0.25 \times 40 \times \frac{\sqrt{3}}{2} \] \[ τ = 0.25 \times 20\sqrt{3} \] \[ τ = 5\sqrt{3} \] Thus, the magnitude of the torque is \( 5\sqrt{3} \, \text{N·m} \).