Pregunta
upstudy study bank question image url

j. \( \frac{7}{x+3}=\frac{8}{x-2} \)

Ask by Powell Bowen. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = -38 \)

Solución

To solve the equation: \[ \frac{7}{x + 3} = \frac{8}{x - 2} \] **Step 1: Cross-Multiply** Cross-multiplying the two fractions helps eliminate the denominators: \[ 7(x - 2) = 8(x + 3) \] **Step 2: Distribute Both Sides** Expand both sides of the equation: \[ 7x - 14 = 8x + 24 \] **Step 3: Gather Like Terms** Bring all terms containing \( x \) to one side and constant terms to the other side: \[ 7x - 8x = 24 + 14 \] Simplify: \[ -1x = 38 \] **Step 4: Solve for \( x \)** Divide both sides by \(-1\): \[ x = \frac{38}{-1} \\ x = -38 \] **Step 5: Check for Validity** Ensure that the solution does not make any denominator zero: - \( x + 3 = -38 + 3 = -35 \neq 0 \) - \( x - 2 = -38 - 2 = -40 \neq 0 \) Since neither denominator is zero, \( x = -38 \) is a valid solution. **Final Answer:** \[ x = -38 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \frac{7}{x+3}=\frac{8}{x-2} \), you can start by cross-multiplying to eliminate the fractions. This gives you: \[ 7(x - 2) = 8(x + 3) \] Expanding both sides will yield: \[ 7x - 14 = 8x + 24 \] Now, rearranging the terms to isolate \( x \) leads to: \[ -14 - 24 = 8x - 7x \] \[ -38 = x \] So, \( x = -38 \). Now, let’s check if this solution is valid by substituting back into the original equation. If both sides balance, you've found a correct solution! --- In ancient civilizations, solving equations like this was crucial for trade and taxation, often leading to the development of algebra. The Babylonians used geometric methods to solve similar problems, long before algebra as we know it today existed! In the real world, proportions and ratios are everywhere! From cooking recipes adjusting ingredient quantities to calculating scale in blueprints or managing budget allocations, understanding how to manipulate equations is a skill that proves invaluable across multiple fields!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad