Pregunta
upstudy study bank question image url

Which is an exponential growth function? \( \begin{array}{l}f(x)=6(0.25)^{x} \\ f(x)=0.25(5.25)^{x} \\ f(x)=-4.25^{x} \\ f(x)=(-1.25)^{x}\end{array} \)

Ask by Reyes George. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = 0.25(5.25)^x \) is an exponential growth function.

Solución

To determine which of the given functions represents **exponential growth**, let's analyze each one individually. An **exponential growth function** has the general form: \[ f(x) = a \cdot b^x \] where: - \( a \) is a constant, - \( b \) is the base of the exponential function, and - **For growth**, \( b > 1 \). Now, let's examine each function: 1. **\( f(x) = 6(0.25)^x \)** - **Base (\( b \))**: 0.25 - Since \( 0.25 < 1 \), this function represents **exponential decay**, not growth. 2. **\( f(x) = 0.25(5.25)^x \)** - **Base (\( b \))**: 5.25 - Here, \( 5.25 > 1 \), which signifies **exponential growth**. 3. **\( f(x) = -4.25^{x} \)** - This can be interpreted as \( f(x) = - (4.25)^x \). - Although the base \( 4.25 > 1 \) suggests growth in magnitude, the negative sign causes the function to decrease (since \( -(4.25)^x \) becomes more negative as \( x \) increases). Therefore, it's **not** a standard exponential growth function. 4. **\( f(x) = (-1.25)^x \)** - **Base (\( b \))**: -1.25 - A negative base introduces oscillations (positive and negative values) depending on whether \( x \) is even or odd. This behavior doesn't align with the typical definition of **exponential growth**, which requires a positive and growing trend. **Conclusion:** Among the provided options, only the second function exhibits the characteristics of an exponential growth function. **Answer:** Only the function \( f(x) = 0.25 \cdot (5.25)^{\,x} \) is an exponential growth function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The function \( f(x) = 0.25(5.25)^{x} \) is an exponential growth function because its base, \( 5.25 \), is greater than 1. This means as \( x \) increases, \( f(x) \) will increase and grow rapidly! The presence of the positive coefficient, \( 0.25 \), does not affect the growth nature—just the vertical stretch. In contrast, the other functions either have a base less than or equal to 1, or involve negative numbers, causing them to either decay or oscillate. So, remember: look for bases greater than 1 to spot exponential growth functions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad