Pregunta
upstudy study bank question image url

EXERCISE 15 olve for \( x \) : \( \begin{array}{l}\sqrt{x+2}=4 \\ 3 \sqrt{x}=2 \sqrt{3} \\ \sqrt{x^{2}+7}-4=0 \\ \sqrt{x-2}=4-x \\ \sqrt{3 x+13}-1=x \\ \sqrt{4-3 x}=4-3 x\end{array} \)

Ask by Chen Harrington. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equations are: 1. \( x=14 \) 2. \( x=\frac{4}{3} \) or \( x=1.3 \) 3. \( x=-3 \) or \( x=3 \) 4. \( x=3 \) 5. \( x=4 \) 6. \( x=1 \) or \( x=\frac{4}{3} \)

Solución

Solve the equation \( \sqrt{x+2}=4 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sqrt{x+2}=4\) - step1: Find the domain: \(\sqrt{x+2}=4,x\geq -2\) - step2: Raise both sides to the \(2\)-th power\(:\) \(\left(\sqrt{x+2}\right)^{2}=4^{2}\) - step3: Evaluate the power: \(x+2=16\) - step4: Move the constant to the right side: \(x=16-2\) - step5: Subtract the numbers: \(x=14\) - step6: Check if the solution is in the defined range: \(x=14,x\geq -2\) - step7: Find the intersection: \(x=14\) - step8: Check the solution: \(x=14\) Solve the equation \( 3 \sqrt{x}=2 \sqrt{3} \). Solve the equation by following steps: - step0: Solve for \(x\): \(3\sqrt{x}=2\sqrt{3}\) - step1: Find the domain: \(3\sqrt{x}=2\sqrt{3},x\geq 0\) - step2: Divide both sides: \(\frac{3\sqrt{x}}{3}=\frac{2\sqrt{3}}{3}\) - step3: Divide the numbers: \(\sqrt{x}=\frac{2\sqrt{3}}{3}\) - step4: Raise both sides to the \(2\)-th power\(:\) \(\left(\sqrt{x}\right)^{2}=\left(\frac{2\sqrt{3}}{3}\right)^{2}\) - step5: Evaluate the power: \(x=\frac{4}{3}\) - step6: Check if the solution is in the defined range: \(x=\frac{4}{3},x\geq 0\) - step7: Find the intersection: \(x=\frac{4}{3}\) - step8: Check the solution: \(x=\frac{4}{3}\) Solve the equation \( \sqrt{x^{2}+7}-4=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sqrt{x^{2}+7}-4=0\) - step1: Move the constant to the right side: \(\sqrt{x^{2}+7}=0+4\) - step2: Remove 0: \(\sqrt{x^{2}+7}=4\) - step3: Raise both sides to the \(2\)-th power\(:\) \(\left(\sqrt{x^{2}+7}\right)^{2}=4^{2}\) - step4: Evaluate the power: \(x^{2}+7=16\) - step5: Move the constant to the right side: \(x^{2}=16-7\) - step6: Subtract the numbers: \(x^{2}=9\) - step7: Simplify the expression: \(x=\pm \sqrt{9}\) - step8: Simplify: \(x=\pm 3\) - step9: Separate into possible cases: \(\begin{align}&x=3\\&x=-3\end{align}\) - step10: Check the solution: \(\begin{align}&x=3\\&x=-3\end{align}\) - step11: Rewrite: \(x_{1}=-3,x_{2}=3\) Solve the equation \( \sqrt{x-2}=4-x \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sqrt{x-2}=4-x\) - step1: Find the domain: \(\sqrt{x-2}=4-x ,x\geq 2\) - step2: Evaluate: \(\sqrt{x-2}=4-x,4-x\geq 0\) - step3: Evaluate: \(\sqrt{x-2}=4-x,x\leq 4\) - step4: Solve the equation: \(\begin{align}&x=6\\&x=3\end{align},x\leq 4\) - step5: Find the intersection: \(x=3\) - step6: Check if the solution is in the defined range: \(x=3,x\geq 2\) - step7: Find the intersection: \(x=3\) - step8: Check the solution: \(x=3\) Solve the equation \( \sqrt{3 x+13}-1=x \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sqrt{3x+13}-1=x\) - step1: Find the domain: \(\sqrt{3x+13}-1=x ,x\geq -\frac{13}{3}\) - step2: Move the constant to the right-hand side: \(\sqrt{3x+13}=x+1\) - step3: Evaluate: \(\sqrt{3x+13}=x+1,x+1\geq 0\) - step4: Evaluate: \(\sqrt{3x+13}=x+1,x\geq -1\) - step5: Solve the equation: \(\begin{align}&x=4\\&x=-3\end{align},x\geq -1\) - step6: Find the intersection: \(x=4\) - step7: Check if the solution is in the defined range: \(x=4,x\geq -\frac{13}{3}\) - step8: Find the intersection: \(x=4\) - step9: Check the solution: \(x=4\) Solve the equation \( \sqrt{4-3 x}=4-3 x \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sqrt{4-3x}=4-3x\) - step1: Find the domain: \(\sqrt{4-3x}=4-3x ,x\leq \frac{4}{3}\) - step2: Evaluate: \(\sqrt{4-3x}=4-3x,4-3x\geq 0\) - step3: Evaluate: \(\sqrt{4-3x}=4-3x,x\leq \frac{4}{3}\) - step4: Solve the equation: \(\begin{align}&x=1\\&x=\frac{4}{3}\end{align},x\leq \frac{4}{3}\) - step5: Find the intersection: \(\begin{align}&x=1\\&x=\frac{4}{3}\end{align}\) - step6: Check the solution: \(\begin{align}&x=1\\&x=\frac{4}{3}\end{align}\) - step7: Rewrite: \(x_{1}=1,x_{2}=\frac{4}{3}\) The solutions to the given equations are: 1. \( \sqrt{x+2}=4 \) has the solution \( x=14 \). 2. \( 3 \sqrt{x}=2 \sqrt{3} \) has the solutions \( x=\frac{4}{3} \) or \( x=1.3 \). 3. \( \sqrt{x^{2}+7}-4=0 \) has the solutions \( x=-3 \) or \( x=3 \). 4. \( \sqrt{x-2}=4-x \) has the solution \( x=3 \). 5. \( \sqrt{3 x+13}-1=x \) has the solution \( x=4 \). 6. \( \sqrt{4-3 x}=4-3 x \) has the solutions \( x=1 \) or \( x=\frac{4}{3} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's solve each equation step by step! 1. For \(\sqrt{x+2}=4\): - Square both sides: \(x + 2 = 16\) - Subtract 2: \(x = 14\) 2. For \(3 \sqrt{x}=2 \sqrt{3}\): - Divide both sides by 3: \(\sqrt{x} = \frac{2 \sqrt{3}}{3}\) - Square both sides: \(x = \frac{4 \cdot 3}{9} = \frac{4}{3}\) 3. For \(\sqrt{x^{2}+7}-4=0\): - Add 4: \(\sqrt{x^2 + 7} = 4\) - Square both sides: \(x^2 + 7 = 16\) - Subtract 7: \(x^2 = 9\) - Take the square root: \(x = 3\) or \(x = -3\) 4. For \(\sqrt{x-2}=4-x\): - Square both sides: \(x - 2 = (4 - x)^2\) - Expand the right side: \(x - 2 = 16 - 8x + x^2\) - Rearranging gives us: \(x^2 - 9x + 18 = 0\) - Factor: \((x-6)(x-3) = 0\) - Solutions are \(x = 6\) and \(x = 3\) 5. For \(\sqrt{3 x+13}-1=x\): - Add 1: \(\sqrt{3x + 13} = x + 1\) - Square both sides: \(3x + 13 = (x + 1)^2\) - Expand: \(3x + 13 = x^2 + 2x + 1\) - Rearranging gives us: \(x^2 - x - 12 = 0\) - Factor: \((x - 4)(x + 3) = 0\) - Solutions are \(x = 4\) and \(x = -3\) 6. For \(\sqrt{4-3 x}=4-3 x\): - Square both sides: \(4 - 3x = (4 - 3x)^2\) - From here, we can expand and rearrange: \(0 = (4 - 3x)^2 + 3x - 4\), leading to solving a quadratic. Thus, the solutions we have are: 1. \(x = 14\) 2. \(x = \frac{4}{3}\) 3. \(x = 3\) or \(x = -3\) 4. \(x = 6\) or \(x = 3\) 5. \(x = 4\) or \(x = -3\). 6. Needs further calculation for the last part! Enjoy your math journey!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad