Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 78 and standard deviation 21 . What is the probability that \( X \) is between 73 and 83 ? Write your answer as a decimal rounded to the nearest thousandth.

Ask by Phillips Newton. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 73 and 83 is 0.188.

Solución

To determine the probability that the normally distributed random variable \( X \) with mean \( \mu = 78 \) and standard deviation \( \sigma = 21 \) falls between 73 and 83, we can follow these steps: 1. **Standardize the Values:** Convert the values 73 and 83 to their corresponding z-scores using the formula: \[ z = \frac{X - \mu}{\sigma} \] - For \( X = 73 \): \[ z_1 = \frac{73 - 78}{21} = \frac{-5}{21} \approx -0.238 \] - For \( X = 83 \): \[ z_2 = \frac{83 - 78}{21} = \frac{5}{21} \approx 0.238 \] 2. **Find the Cumulative Probability:** Using standard normal distribution tables or a calculator, find the cumulative probability for \( z = 0.238 \). - \( \Phi(0.238) \approx 0.594 \) 3. **Calculate the Desired Probability:** The probability that \( X \) is between 73 and 83 is the difference between the cumulative probabilities at \( z_2 \) and \( z_1 \): \[ P(73 \leq X \leq 83) = \Phi(z_2) - \Phi(z_1) = 0.594 - (1 - 0.594) = 2 \times 0.594 - 1 = 0.188 \] **Final Answer:** \[ \boxed{0.188} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is between 73 and 83 for a normally distributed random variable with mean \( \mu = 78 \) and standard deviation \( \sigma = 21 \), we first calculate the z-scores for 73 and 83. The z-score formula is: \[ z = \frac{(X - \mu)}{\sigma} \] For \( X = 73 \): \[ z_{73} = \frac{(73 - 78)}{21} = \frac{-5}{21} \approx -0.238 \] For \( X = 83 \): \[ z_{83} = \frac{(83 - 78)}{21} = \frac{5}{21} \approx 0.238 \] Next, we can use a standard normal distribution table (or a calculator with statistical functions) to find the probabilities corresponding to these z-scores. \[ P(Z < z_{73}) \approx P(Z < -0.238) \approx 0.406 \] \[ P(Z < z_{83}) \approx P(Z < 0.238) \approx 0.594 \] Now we find the probability that \( X \) is between 73 and 83: \[ P(73 < X < 83) = P(Z < z_{83}) - P(Z < z_{73}) \approx 0.594 - 0.406 = 0.188 \] Thus, the probability that \( X \) is between 73 and 83 is approximately \( 0.188 \) when rounded to the nearest thousandth.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad