Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 84 and standard deviation 6 . What is the probability that \( X \) is less than 66 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Higgins Black. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is less than 66 is 0.001.

Solución

To find the probability that \( X \) is less than 66, given that \( X \) is normally distributed with a mean (\( \mu \)) of 84 and a standard deviation (\( \sigma \)) of 6, we'll use the \( 68-95-99.7 \) rule (also known as the Empirical Rule). ### Step-by-Step Calculation: 1. **Determine the Z-Score:** The Z-score measures how many standard deviations an element is from the mean. It's calculated as: \[ Z = \frac{X - \mu}{\sigma} \] For \( X = 66 \): \[ Z = \frac{66 - 84}{6} = \frac{-18}{6} = -3 \] 2. **Apply the 68-95-99.7 Rule:** - **68%** of the data lies within **±1** standard deviation from the mean. - **95%** within **±2** standard deviations. - **99.7%** within **±3** standard deviations. Since \( Z = -3 \) is exactly 3 standard deviations below the mean, the probability that \( X \) is less than 66 corresponds to the extreme end of the distribution. The rule tells us that: \[ P(\mu - 3\sigma < X < \mu + 3\sigma) = 0.997 \] Therefore, the probability that \( X \) is **less than** \( \mu - 3\sigma \) (which is 66) is: \[ P(X < 66) = \frac{1 - 0.997}{2} = \frac{0.003}{2} = 0.0015 \] Rounding to the nearest thousandth: \[ P(X < 66) \approx 0.001 \] ### Final Answer: \[ \boxed{0.001} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is less than 66, we first need to calculate how many standard deviations 66 is away from the mean (84). This is done using the z-score formula: \[ z = \frac{X - \mu}{\sigma} = \frac{66 - 84}{6} = \frac{-18}{6} = -3. \] Now, looking at the standard normal distribution, a z-score of -3 indicates that 66 is three standard deviations below the mean. According to the \( 0.68-0.95-0.997 \) rule, approximately 99.7% of data lies within three standard deviations of the mean in both directions (plus and minus). This means that the area to the left of z = -3 is very small, specifically: \[ P(X < 66) \approx 0.001. \] Thus, the probability that \( X \) is less than 66 is about 0.001 when rounded to the nearest thousandth.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad