Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 44 and standard deviation 18 . What is the probability that \( X \) is between 8 and 98 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Guzman Ross. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 8 and 98 is 0.976.

Solución

To find the probability that \( X \) is between 8 and 98 for a normally distributed random variable with mean \( \mu = 44 \) and standard deviation \( \sigma = 18 \), we can use the properties of the normal distribution. 1. **Calculate the Z-scores** for the values 8 and 98 using the formula: \[ Z = \frac{X - \mu}{\sigma} \] 2. **Calculate the Z-score for \( X = 8 \)**: \[ Z_1 = \frac{8 - 44}{18} = \frac{-36}{18} = -2 \] 3. **Calculate the Z-score for \( X = 98 \)**: \[ Z_2 = \frac{98 - 44}{18} = \frac{54}{18} = 3 \] 4. **Use the Z-scores to find the probabilities**: - The Z-score of -2 corresponds to the left tail of the normal distribution. - The Z-score of 3 corresponds to the right tail of the normal distribution. Using the \( 0.68-0.95-0.997 \) rule: - Approximately 68% of the data falls within 1 standard deviation from the mean. - Approximately 95% of the data falls within 2 standard deviations from the mean. - Approximately 99.7% of the data falls within 3 standard deviations from the mean. 5. **Determine the probabilities**: - The probability that \( Z < -2 \) is approximately \( 0.0228 \) (from Z-tables). - The probability that \( Z < 3 \) is approximately \( 0.9987 \) (from Z-tables). 6. **Calculate the probability that \( X \) is between 8 and 98**: \[ P(8 < X < 98) = P(Z < 3) - P(Z < -2) = 0.9987 - 0.0228 \] Now, let's perform the calculation: \[ P(8 < X < 98) = 0.9987 - 0.0228 = 0.9759 \] Thus, the probability that \( X \) is between 8 and 98 is approximately \( 0.976 \) when rounded to the nearest thousandth. Final answer: \[ \boxed{0.976} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 8 and 98 for a normally distributed variable with a mean of 44 and a standard deviation of 18, we can utilize the \( 0.68-0.95-0.997 \) rule, which helps us understand the distribution of data around the mean. First, calculate the z-scores for the values 8 and 98: - For \( X = 8 \): \[ z_1 = \frac{8 - 44}{18} \approx -2.00 \] - For \( X = 98 \): \[ z_2 = \frac{98 - 44}{18} \approx 3.00 \] According to the \( 0.68-0.95-0.997 \) rule, about 95% of the data lies within 2 standard deviations from the mean. Since 8 and 98 correspond to approximately -2 and +3 standard deviations, we can calculate the probability accordingly. From the rule, we know: - 95% of the data lies within -2 to +2 standard deviations (mean ± 2σ), which takes us from (8, 80). - The area from +2σ to +3σ (80 to 98) covers a bit less than 0.5%. Adding these probabilities together gives us: \[ P(8 < X < 98) \approx 0.95 + 0.005 = 0.955 \] Thus, the probability that \( X \) is between 8 and 98 is approximately **0.955** when rounded to the nearest thousandth.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad